

1.2MHz, 32V Step-Up LED Driver with 320mA Current Limit

General Description

LA8304 is a current mode, step-up DC-DC converter that is designed driving up to 6 series LEDs from a single cell Li-Ion battery. It utilizes PWM control scheme that switches with 1.2MHz fixed frequency and 320mA current limit.

The input voltage range is from 2.5V to 10V, and available in adjustable output up to 32V. It provides 104mV low feedback voltage to reduce power loss and improve efficiency. In portable applications, the LA8304 provides 0.1uA low shutdown current to extend battery life. The fast switching frequency of 1.2MHz allows using small size, low cost and low height capacitors and inductors.

The under voltage lockout function prevents low input voltage start up until the input voltage reaches the UVLO threshold voltage. Other features of dimming control, over voltage protection, and thermal shutdown protection are also included. The package is available in standard SOT-23-6.

Ordering Information

LA8304 1 2 3 4

- 1 (Package Type) => C: SOT-23
- 2 (Number of Pins) => E: 6 pin
- 3 (Output Voltage) => Blank: Adjustable
- 4 (Special Feature) => Blank: N/A

Available Part Number

LA8304CE

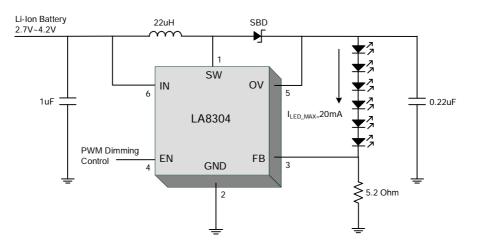
Features

- Adjustable Output Voltage up to 32V
- ı Driving up to 6 Series LEDs
- 1 2.5V to 10V Input Voltage Range
- 1 320mA Switching Current Limit
- 1.2MHz Oscillation Frequency
- ı 104mV Reference Voltage
- Low Shutdown Current: 0.1uA
- Current Mode for Excellent Response
- ı PWM / Analog Dimming Control
- ı Under Voltage Lockout
- Optional 29V Over Voltage Protection
- 1 Thermal shutdown Protection
- I Standard SOT-23-6 Package
- Meet RoHS Standard

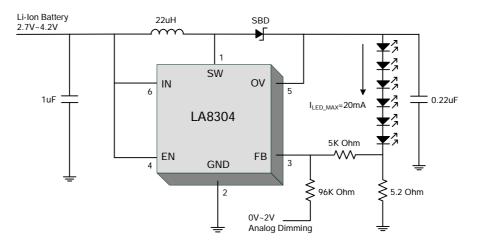
Applications

- ı Digital Still and Video Cameras
- 1 Mobile Phone
- I PDA, Handheld Computer
- ı PMP, MP3 Player
- ı GPS

Marking Information

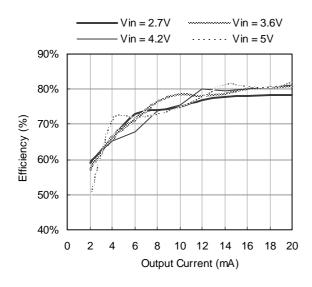

- 1 2 (Product Code) LA8304CE : LB
- 3 4 (Date Code)

For date code rule, please contact our sales representative directly.

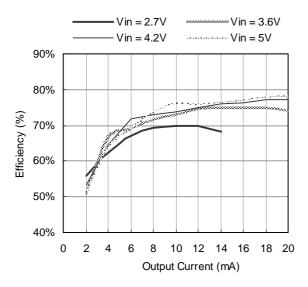


Typical Application

Li-Ion Battery Application - For 6 Series LEDs with PWM Dimming


Li-Ion Battery Application - For 6 Series LEDs with Analog Dimming

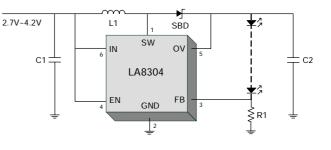
Efficiency Curve



Driving 3 Series LEDs

Driving 4 Series LEDs

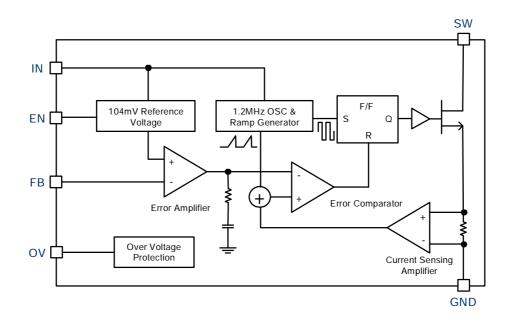
Driving 6 Series LEDs



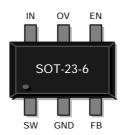
Quick Design Table

For Li-Ion Battery Application, $V_{IN} = 2.7V \sim 4.2V$, continuous current mode operation.

- **C1**: Recommended Input Capacitor
- C2: Minimum Output Capacitor
- L1: Recommended Inductor
- R1: Current Setting Resistor



LEDs ILED	5mA	10mA	15mA	20mA
2 Series	C1 : 1uF	C1 : 1uF	C1 : 1uF	C1 : 1uF
	C2 : 1uF	C2 : 2.2uF	C2 : 4.7uF	C2 : 4.7uF
	L1 : 22uH	L1 : 22uH	L1 : 22uH	L1 : 22uH
	R1 : 20.80hm	R1 : 10.40hm	R1 : 6.93Ohm	R1 : 5.20hm
3 Series	C1 : 1uF	C1 : 1uF	C1 : 1uF	C1 : 1uF
	C2 : 1uF	C2 : 1uF	C2 : 2.2uF	C2 : 2.2uF
	L1 : 22uH	L1 : 22uH	L1 : 22uH	L1 : 22uH
	R1 : 20.80hm	R1 : 10.40hm	R1 : 6.93Ohm	R1 : 5.2Ohm
4 Series	C1 : 1uF	C1 : 1uF	C1 : 1uF	C1 : 1uF
	C2 : 0.68uF	C2 : 1uF	C2 : 2.2uF	C2 : 2.2uF
	L1 : 22uH	L1 : 22uH	L1 : 22uH	L1 : 22uH
	R1 : 20.80hm	R1 : 10.40hm	R1 : 6.93Ohm	R1 : 5.2Ohm
5 Series	C1 : 1uF	C1 : 1uF	C1 : 1uF	C1 : 1uF
	C2 : 0.22uF	C2 : 0.47uF	C2 : 0.68uF	C2 : 0.68uF
	L1 : 22uH	L1 : 22uH	L1 : 22uH	L1 : 22uH
	R1 : 20.80hm	R1 : 10.40hm	R1 : 6.930hm	R1 : 5.20hm
6 Series	C1 : 1uF	C1 : 1uF	C1 : 1uF	C1 : 1uF
	C2 : 0.22uF	C2 : 0.22uF	C2 : 0.22uF	C2 : 0.22uF
	L1 : 22uH	L1 : 22uH	L1 : 22uH	L1 : 22uH
	R1 : 20.80hm	R1 : 10.40hm	R1 : 6.930hm	R1 : 5.20hm



Functional Block Diagram

Pin Configurations

Pin No.	Name	Description
1	SW	This switching pin of the converter. Connect this pin to the node between the inductor and the rectifier diode.
2	GND	The ground pin of the converter. Connect this pin to the circuit ground.
3	FB	This pin senses the feedback voltage to regulate the output voltage. Connect a voltage divider to set the output voltage. For LED applications, connect a resistor (R_{FB}) to set LED current by the following formula: $I_{LED}=104mV/R_{FB}$
4	EN	This pin allows an external logic control signal to turn-on/off this device. Drive this pin to low level to turn-off this device, drive it to high level to turn-on this device. Do not leave EN floating.
5	OV	The over voltage input pin. Connect this pin to output to trigger the over voltage protection and prevent the output over 29V. Leave OV floating to disable this function.
6	IN	The input pin of the converter. Connect a capacitor from this pin to ground to bypass noise on the input of this device.

Absolute Maximum Ratings

Parameter	Rating		
Input Voltage	10V		
SW, OV Pin Voltage Range	-0.3V ~ 34V		
FB Pin Voltage Range	-0.3V ~ 10V		
EN Pin Voltage Range	-0.3V ~ 10V		
Storage Temperature Range	-65°C ~ 150°C		
Junction Temperature	150 °C		
Lead Soldering Temperature (10 sec)	300 °C		

These are stress ratings only and functional operation is not implied. Exposure to absolute maximum ratings for prolonged time periods may affect device reliability. All voltages are with respect to ground.

Recommended Operating Conditions

Parameter	Rating
Input Voltage Range	2.5V ~ 10V
Ambient Temperature Range	-40°C ~ 85°C
Junction Temperature Range	-40°C ~ 125°C

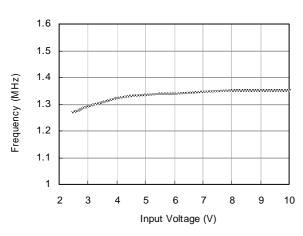
These are conditions under which the device functions but the specifications might not be guaranteed. For guaranteed specifications and test conditions, please see the *Electrical Specifications*.

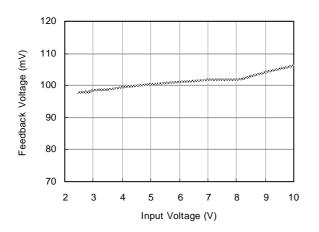
Package Information

Parameter	Package	Symbol	Rating	
Thermal Resistance (Junction to Case)	SOT-23-6	θ _{JC}	110 °C/W	
Thermal Resistance (Junction to Ambient)	nce		220 °C/W	

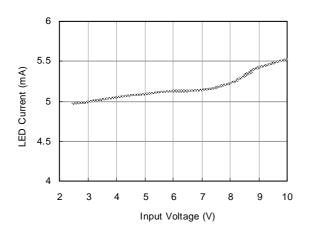
Electrical Specifications

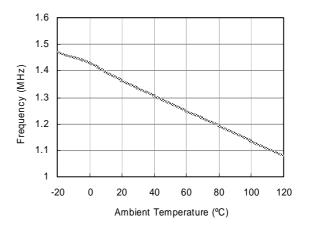
Parameter	Symbol	Test Condition	Min.	Тур.	Max.	Units
Feedback Voltage	V _{FB}		94	104	114	mV
Efficiency	η	Drive 3 series LEDs, I _{LED} =20mA		82		%
Oscillation Frequency	F _{osc}		0.9	1.2	1.5	MHz
Maximum Duty Cycle	DC _{MAX}	V _{FB} =0V	85	90		%
Switch Saturation Voltage	V _{SAT}	I _{sw} =250mA		350		mV
Current Limit	I _{LIM}	Duty Cycle = 60%		320		mA
Supply Current	I _{IN}	V _{FB} =0.15V		2	2.6	mA
Shutdown Current	Is	V _{EN} =0V		0.1	1	uA
EN Pin Input Threshold	V	Regulator OFF		0.5		
Voltage	V _{EN}	Regulator ON	1	0.7		V
EN Pin Bias Current	I _{EN}	Regulator OFF			1	
EN PIÙ Blas Current		Regulator ON			100	uA
Switch Leakage Current	I _{SL}	$V_{SW}=5V, V_{EN}=0V$		0.01	5	uA
FB Pin Bias Current	I _{FB}		0.01	0.045	1	uA
Under Voltage Lockout	UVLO	V_{IN} Rising		2.1		V
Under Voltage Lockout Hysteresis	UVLO _{HYS}			20		mV
Over Voltage Protection Threshold	V _{ov}	V _{ov} Rising		29		V
Line Regulation	$\triangle V_{LINE}$	V_{IN} =2.7V~4.2V Drive 3 series LEDs, I_{LED} =20mA		1		%/V
Load Regulation	$\triangle V_{LOAD}$	Drive 3 series LEDs $I_{LED} = 1 \text{mA} \sim 20 \text{mA}$		0.1		%/mA
Over Temperature Shutdown	T _{SD}			145		°C
Over Temperature Shutdown Hysteresis	T _{HYS}			10		°C

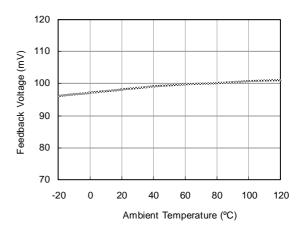

 $V_{\text{IN}}{=}~V_{\text{EN}}{=}3.6V,~T_{\text{A}}{=}25^{o}\text{C},$ unless otherwise noted.

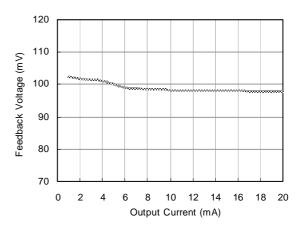

Typical Performance Characteristics

Frequency vs. Input Voltage

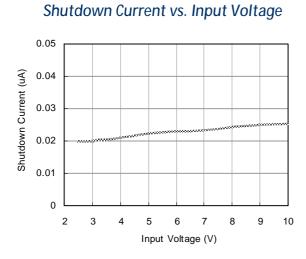

 $V_{\text{IN}}{=}3.6V,\,T_{\text{A}}{=}25^{\text{o}}\text{C},\,\text{unless otherwise noted}.$


Feedback Voltage vs. Input Voltage

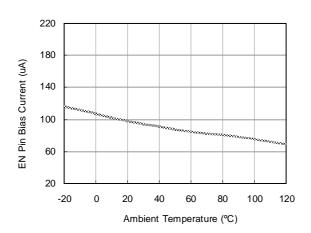

Line Regulation

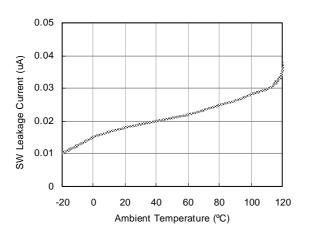

Frequency vs. Temperature

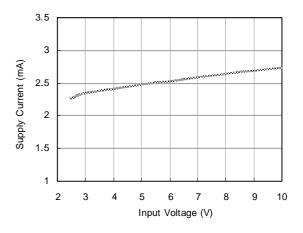
Feedback Voltage vs. Temperature

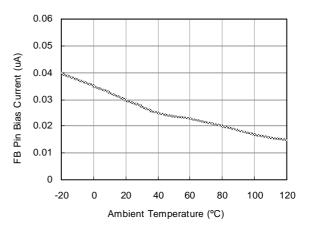


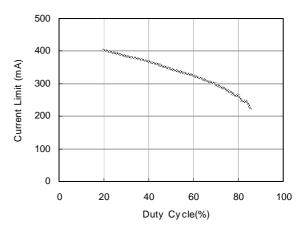
Load Regulation




Typical Performance Characteristics (Contd.)

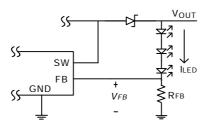

EN Bias Current vs. Temperature


SW Leakage Current vs. Temperature


Supply Current vs. Input Voltage

FB Bias Current vs. Temperature

Current Limit vs. Duty Cycle



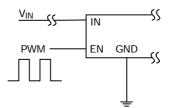
Application Information

LED Current Setting

This device is a constant current boost regulator that develops 104mV reference voltage between FB and GND. Use 1% chip resistor to set the LED current and attain the better current accuracy. The LED current can be calculated by the following formula:

 I_{LED} = V_{FB} / R_{FB} ; where V_{FB} = 104mV

Under Voltage Lockout


The under voltage lockout prevents this device from turning on the internal power switch at lower input voltage. It avoids wrong operation under undefined conditions. The under voltage lockout threshold is approximately 2.1V. When the input voltage drop under the threshold voltage, this device will be disabled and auto recovery once the input voltage rise above it.

Dimming Control

- PWM Dimming

Connect an external PWM signal at EN pin to turn on or off this device. It is a simple method of brightness control for LED. A 0% duty cycle will turn off this device and corresponds to zero the LED current. A 100% duty cycle corresponds to full current. The variation of the average LED current is proportionally with the PWM duty cycle.

The minimum PWM frequency must higher than 100Hz, and the typical value is 1KHz. The following circuit is PWM dimming control from EN pin.

- Analog Dimming

The analog dimming control using a DC voltage (V_{DIM}) is shown in the following circuit. As the V_{DIM} increases, the voltage drop on R2 increases. Thus the LED current decreases. The R1 and R2 must

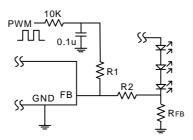
make the DC source current much larger than the FB bias current and much smaller than the LED current. The LED current can be calculated by the following formula:

$$ILED = \frac{V_{FB} \times (R1 + R2) - V_{DIM} \times R2}{R1 \times R_{FB}}$$

If the V_{DIM} is taken below the V_{FB} , the inverse will happen and the brightness will increase. The analog dimming circuit can be tailored for different resistor value using the following formula:

$$R1 = \frac{(V_{DIM} - MAX - V_{FB}) \times R2}{V_{FB} \times (1 - \frac{I_{LED} - DIMMED - MIN}{I_{LED} - UNDIMMED})}$$

Example:

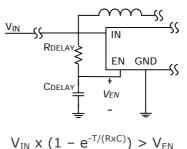

$$\begin{split} V_{DIM_MAX} &= 2V \\ I_{LED_DIMMED_MIN} &= 1mA \qquad ; V_{DIM} = 2V \\ I_{LED_UNDIMMED} &= 20mA \qquad ; V_{DIM} = V_{FB} = 0.104V \\ R2 &= 5KOhm \rightarrow R1 = 96KOhm \end{split}$$

The analog dimming circuit can be tailored for different dimming voltage range using the following formula:

$$V_{\text{DIM}} = V_{\text{FB}} \times \frac{\text{R1}}{\text{R2}} \times (1 + \frac{\text{R2}}{\text{R1}} - \frac{\text{I}_{\text{Led}} _ \text{dimmed} _ \text{min}}{\text{I}_{\text{Led}} _ \text{undimmed}})$$

- Filtered PWM Dimming from FB

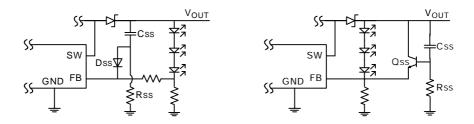
Filtered PWM circuit can be used to replace the DC voltage source in dimming control. The circuit is shown in the following figure that is suitable for the soft-start function is used, and the PWM frequency of the brightness control is too high to result in the device without fully turns on or off.



Delay Start-up

The following circuit uses the EN pin to provide a time delay between the input voltage is applied

and the output voltage comes up. As the instant of the input voltage rises, the charging of capacitor C_{DELAY} pulls the EN pin low, keeping the device off. Once the capacitor voltage rises above the EN pin threshold voltage, the device will start to operate.


Where T is the start-up delay time, R is R_{DELAY} , C is C_{DELAY} , and the typical V_{EN} is 0.7V.

This feature is useful in situations where the input power source is limited in the amount of current it can deliver. It allows the input voltage to rise to a higher voltage before the device starts operating.

Soft-Start

In some application, the large start-up current or overshooting voltage maybe causes problems. The major problem occurs when the input power source to the regulator is current-limited or has poor load regulation. Both of which will cause input voltage to drop during start-up.

The following circuits are the recommended soft-start circuits those are formed by R_{SS} , C_{SS} and D_{SS} (or Q_{SS}). They prevent excessive input inrush current and output overshooting voltage during start-up. If both dimming control and soft-start are used, use a lower frequency PWM signal or implement dimming through the FB pin are recommended.

Layout Considerations

PC board layout is very important, especially for higher frequency switching regulators. A good layout minimizes EMI on the feedback path and provides best efficiency.

The following layout guides should be used to ensure proper operation of this device.

(1) Minimize the copper area and length of all trace connected to SW.

(2) The feedback path should be close to FB and keep noisy traces away; also keep them separate using grounded copper.

(3) The ground of the feedback resistor should be connect to GND directly to ensure a clean connection

- (4) The (-) plate of the output capacitor should be close to GND.
- (5) Keep the (-) plates of input and output capacitors as close as possible.

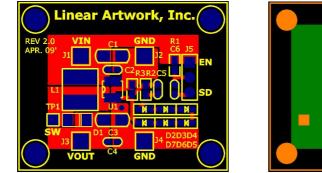
Component Selection

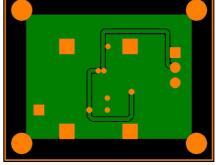
Inductor Selection

The 1.2MHz high switching frequency minimizes the inductance. Use a low DCR surface mount inductor to reduce the board size and improve the efficiency. A 22uH inductor is recommended for most applications.

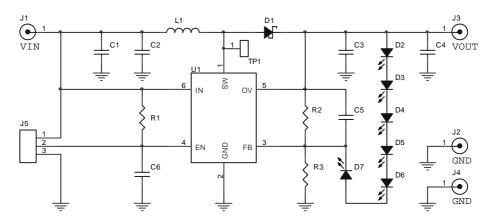
Capacitors Selection

The small size, low ESR multi layer ceramic capacitors are ideal for most applications. X7R and X5R types are recommended because the stable capacitance and temperature coefficient.


The input capacitor is required to supply current to the regulator and maintain the DC input voltage. A 1uF low ESR capacitor is preferred to provide the better performance and the less ripple voltage. The suitable value of output capacitor is 0.22uF~4.7uF or more.


Rectifier Diode Selection

The rectifier diode provides a current path for the inductor current when the internal power switch turns off. The best solution is Schottky diode because its low forward voltage will reduce the conduction loss, and the fast recovery time (or low diode capacitance) will reduce the switch loss. Choose a Schottky diode with 100mA ~ 200mA current rating is sufficient for most application.

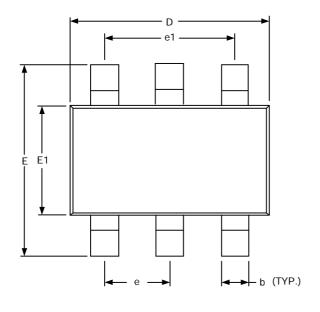


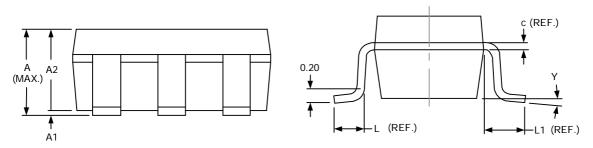
Evaluation Board Layout

Evaluation Board Schematic

Bill of Materials

V _{IN} =2.7~4.2V	, for 6 se	ries LEDs	application,	$I_{LED}=20mA$
---------------------------	------------	-----------	--------------	----------------


Designation	Descriptions	Manufacturer Part #	Manufacturer	Manufacturer Website		
U1	1.2M, 32V Step-Up LED Driver, SOT-23-6 Package	LA8304CE	Linear Artwork	www.linear-artwork.com		
L1	Surface Mount Inductor 22uH, 420mA, 84mOhm, 3.0*3.0*1.2mm	NR3012T220M Taiyo Yuden		www.yuden.co.jp		
D1	Schottky Diode 30V, 0.5A, 0.47 V_F , SOD-323	RB551V-30	Tiptek	www.tip-tek.com.tw		
C1	MLCC 1uF, 0805, X7R, 25V	TMK212BJ105KD-T	Taiyo Yuden	www.yuden.co.jp		
С3	MLCC 0.22uF, 0805, X7R, 50V	UMK212BJ224KG-T	Taiyo Yuden	www.yuden.co.jp		
C2,C4	MLCC 0.1uF, 0603, B, 50V	C1608JB1H104K	TDK	www.tdk.com		
R1,R2,C5,C6	C6 No Connection					
R3	Chip Resistor, 5.20hm, 0805, ±1%	RC0805FR-075R2L	Yageo	www.yageo.com		
D2~D7	0603 Package Chip LED					
J5	Male Header 180° 3*1P 2.54mm					
J1,J2,J3,J4	Terminal Binding Post 1.6mm					
TP1	Male Header 180° 1P 2.54mm					



Package Outline

SOT-23-6

	DIMENSIONS							
REF.	Millin	neter	REF.	Millimter				
	Min.	Max.		Min.	Max.			
А	1.45	MAX.	L	0.37 REF.				
A1	0	0.10	L1	0.60 REF.				
A2	1.10	1.30	Y	0° 10°				
С	0.12 REF.		b	0.30	0.50			
D	2.70	3.10	е	0.95 REF.				
E	2.60	3.00	e1	1.90 REF.				
E1	1.40	1.80						

NOTICE

The specifications and product information of Linear Artwork, Inc. are subject to change without any prior notice, and customer should contact Linear Artwork, Inc. to obtain the latest relevant information before placing orders and verify that such information is current and complete.

The information provided here is believed to be reliable and accurate; however Linear Artwork, Inc. makes no guarantee for any errors that appear in this document.

LIFE SUPPORT POLICY

Linear Artwork products are not designed or authorized for use as critical components in life support devices or systems without the express written approval of the president of Linear Artwork, Inc. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.

2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Linear Artwork, Inc.

Headquarter

7F, No.207-1, Sec.3, Beisin Rd., Sindian City, Taipei County, Taiwan 231, R.O.C. TEL : +886-2-8913-1898 FAX : +886-2-8913-1980

Branch Office

Room 222, 2F, Dongfang Plaza, No.1072, Jianshe Rd., Luohu District, Shenzhen City, Guangdong, China. TEL / FAX : +86-755-8218-0700 Website : www.linear-artwork.com E-mail : sales@linear-artwork.com

www.s-manuals.com