
Single and Dual Cell Li+ Battery Charger IC -LP28009

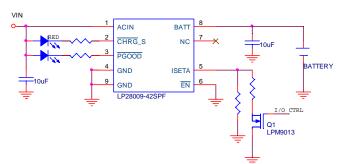
General Description

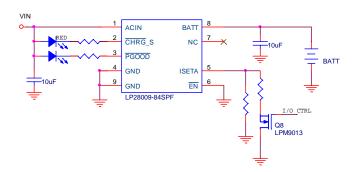
The LP28009 is a fully integrated low cost single-cell Li-Ion battery charger IC ideal for portable applications. The LP28009 is capable of being powered up from AC adapter. The LP28009 enters sleep mode when AC adapter is removed. The LP28009 optimizes the charging task by using a control algorithm including preconditioning mode, fast charge mode and constant voltage mode. The charging task is terminated as the charge current drops below the preset threshold. The AC adapter charge current can be programmed up to 1A with an external resister. The internal thermal feedback circuitry regulates the die temperature to optimize the charge rate for all ambient temperatures. The LP28009 features 18V maximum rating voltages for AC adapter. The other features are under voltage protection, over voltage protection for AC adapter supply and battery temperature monitoring.

Order Information

Applications

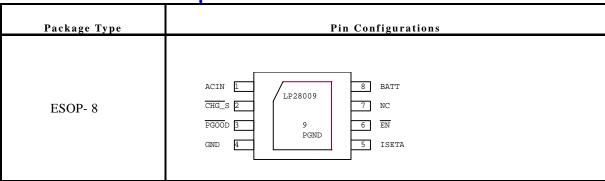
- Portable Media Players/MP3 players
- Cellular and Smart mobile phone
- ♦ PDA/DSC
- ♦ Bluetooth Applications


Marking Information

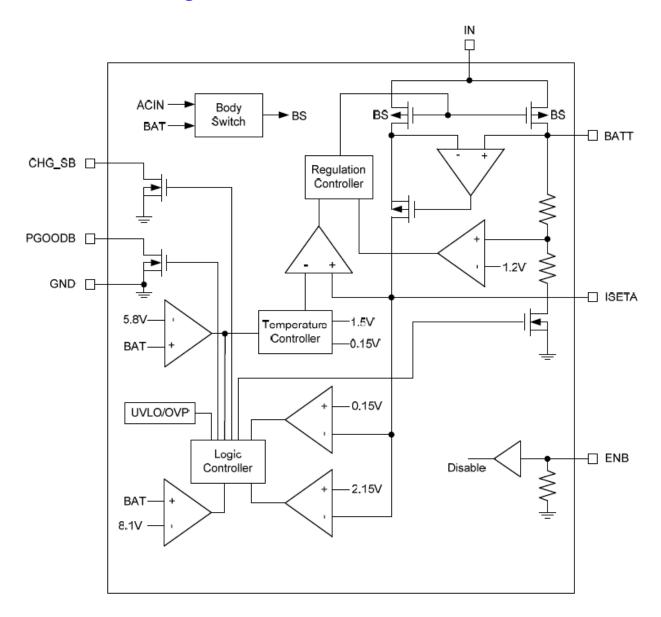

Please see website of LP28009: www.lowpowersemi.com.

Features

- 18V Maximum Rating for AC Adapter
- Internal Integrate P-MOSFETs
- AC Adapter Power Good Status Indicator
- Charge Status Indicator
- Under Voltage Protection
- Over Voltage Protection
- Automatic Recharge Feature
- Battery Temperature Monitoring
- Small 8-Lead SOP(EP) Package
- Thermal Feedback Optimizing Charge Rate
- ROHS Compliant and 100% Lead (Pb)-Free

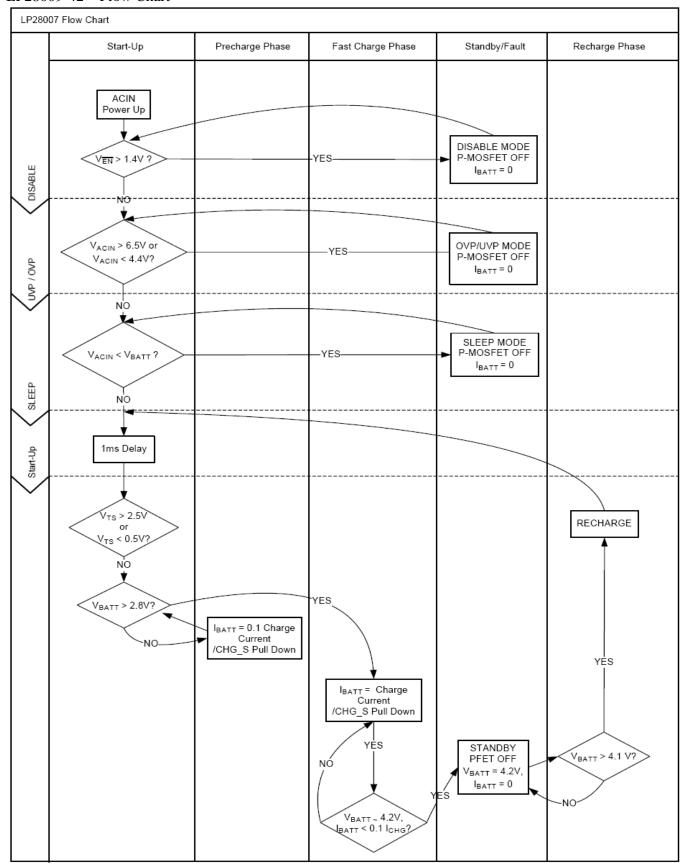

Typical Application Circuit

Functional Pin Description



Pin Description

Pin No	Pin Name	Pin Function			
1	ACIN	Wall Adaptor Charge Input Supply.			
2	CHG_S	Charge Status Indicator Output(Open Drain).			
3	PGOOD	Power Good Indicator Output(Open drain).			
4	GND	Ground.			
5	ISETA	Wall Adaptor supply charge current Set point.			
6	ĒN	Charge Enable Input(active low).			
7	NC	No Internal Connection.			
8	BATT	Battery Charge Current Output. This pin provides charge current to the battery and regulates the final float voltage to 4.2 or 8.4 V. An internal precision resistor divider from this pin sets the float voltage which is disconnected in shutdown mode.			
9(Exposed Pad)	PGND	Exposed Pad Should be soldered to PCB Board and Connected to GND.			


Note: LP28009-42SPF and LP28009-84SPF of Battery (Pin8) is output pin, the pin connector to Battery.

Function Block Diagram

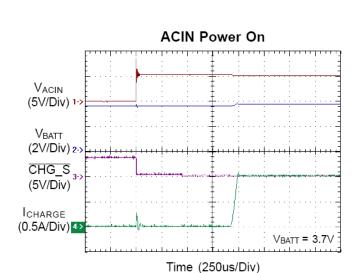
LP28009-42 Flow Chart

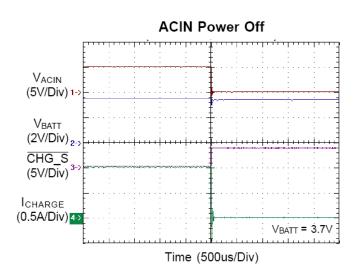
Absolute Maximum Ratings (Notes 1, 2)

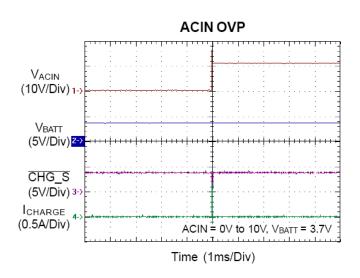
 V_{IN} , V_{BATT} , V_{CHGSB} , V_{PROODB} , V_{EN} -0.3V to 15V Storage Temperature Range -65°C to 150°C V_{ISETA} -0.3V to 3.6V Junction Temperature (T_J) 150°C Power Dissipation (Note 5) Lead Temperature (Soldering, 10 sec.) 260°C

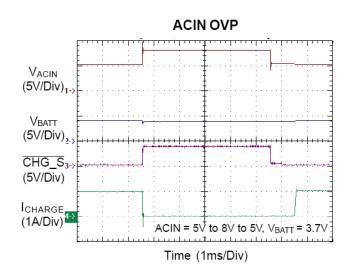
Operating Ratings (Note 1, 2)

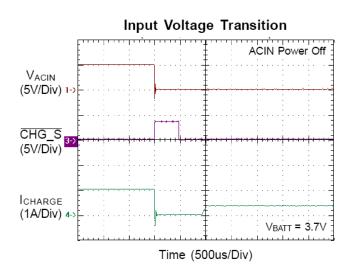
Supply Voltage 9V to 13.5V Thermal Resistance (θ_{JA} , Note 3)) 120°C/W Operating Temperature Range -40°C to 85°C Thermal Resistance (θ_{JC} , Note 4)) 8.5°C/W

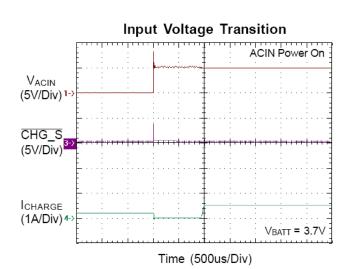

Electrical Characteristics

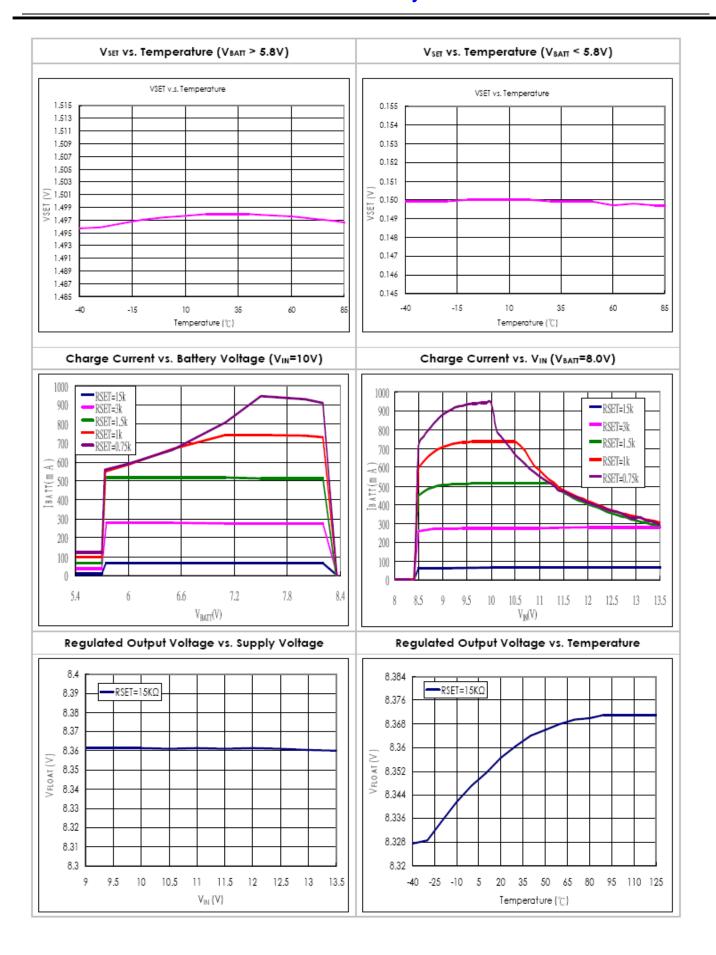

 $T_A = 25$ °C, $V_{IN} = 10V$; unless otherwise specified.


Symbol	Parameter	Conditions	Min	Тур	Max	Units
Vin	Input Operating Voltage		9	10	13.5	v
	Range					
		Charge Mode, R _{SET} = 30K (Note 6)		300		UΑ
	Input Supply Current	Standby Mode (Charge		250		UA
Icc		Terminated)				
		Shutdown Mode (Rset Not		190		UΑ
		Connected, $V_{IN} \le V_{BATT}$ or $V_{IN} \le V_{UV}$)		170		
V _{FLOAT}	Regulated Output (Float) Voltage	0°C ≦ T _A ≦ 85°C	8.316	8.4	8.484	v
		R _{SET} = 1.5K, Current Mode		500		mA
		R _{SET} = 0.75K, Current Mode		1000		mA
IBATT	BATT Pin Current	Standby Mode, V _{BATT} = 8.4V	-1	0	1	UΑ
		Shutdown Mode	-1	0	1	UΑ
		Sleep Mode, V _{IN} = 0V	-1	0	1	UΑ
	Trickle Charge Current	V _{BATT} < V _{TRICKLE} , R _{SET} = 1.5K		60		mA
ITRICKLE		V _{BATT} < V _{TRICKLE} , R _{SET} = 0.75K		120		mA
VTRICKLE	Trickle Charge Threshold Voltage	R _{SET} = 1.5K, V _{BATT} Rising		5.8		v
V _{TRHYS}	Trickle Charge Hysteresis Voltage	R _{SET} = 1.5K		250		mV
	Manual Shutdown Threshold	ISETA Pin Rising		2.15		v
V _{MSD}	Voltage	ISETA Pin Falling		2.05		v
	V _{IN} -V _{BATT} Lockout Threshold	V _{IN} from High to Low		30		mV
V _{ASD}	Voltage	V _{IN} from Low to High		60		mV
	C/10 Termination Current	R _{SET} = 1.5K		0.1		mA/mA
I _{TERM}	Threshold	R _{SET} = 0.75K		0.1		mA/mA
Vset	ISETA Pin Voltage	R _{SEI} = 1.5K, Current Mode		1.5		٧
I _{CHG_SB}	CHG_SB Pin Weak Pull-Down Current	V _{CHG_58} = 5.0V		25		UΑ
V _{CHG_SB}	CHG_SB Pin Output Low Voltage	I _{CHG_SB} = 5mA		0.35		٧
V _{POOGDB}	PGOODB Pin Output Low Voltage	I _{PGOODB} = 5mA		0.35		v


Parameter		Symbol	Test Conditions	Min	Тур	Max	Units	
Precharge	Precharge							
BATT Pre-Charge Rising Threshold		VPRECH		2.6	2.8	3	V	
BATT Pre-Charge Threshold Hysteresis		ΔV _{PRECH}		50	100	200	mV	
Pre-Charge Curr	ent	I _{PCHG}	V _{BATT} = 2V	8	10	12	%	
Recharge Thres	shold							
BATT Re-Charge Falling Threshold Hysteresis		ΔV _{RECH_L}	V _{REG} – V _{BATT}	60	100	150	mV	
Charge Termina	Charge Termination Detection							
Termination Curr	Termination Current Ratio (default)		V _{BATT} = 4.2V		10		%	
Logic Input/Out	Logic Input/Output							
CHG_S Pull Down Voltage		V CHG_S	TBD, ICHG_S = 5mA		65		mV	
PGOOD Pull Down Voltage		V PGOOD	TBD, IPGOOD = 5mA		220		mV	
EN Threshold	₋ogic-High Voltage	V _{IH}		1.5			V	
	_ogic-Low Voltage	VIL				0.4	V	
EN Pin Input Current		t _{EN}	∀ _{EN} = 2∨			2	μА	
Protection								
Thermal Regulation					125		°C	
OVP SET			Internal Default		6.5		V	


- Note 1. Stresses listed as the above "Absolute Maximum Ratings" may cause permanent damage to the device. These are for stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may remain possibility to affect device reliability.
- Note 2. θ_{JA} is measured in the natural convection at T_A = 25°C on a high effective thermal conductivity test board (4 layers, 1S) of JEDEC 51-7 thermal measurement standard. The case point of θ_{JC} is on the expose pad for the package.
- Note 3. Devices are ESD sensitive. Handling precaution is recommended.
- Note 4. The device is not guaranteed to function outside its operating conditions.



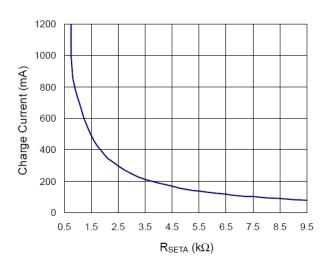


Application Information

Automatically Power Source Selection

The LP28009 is a battery charger IC which is designed for Li-ion Battery with 4.2V rated voltage. ACIN Mode: When the ACIN input voltage is higher than the UVP voltage level (4.4V), the LP28009 will turn on ACINP-MOSFET. Sleep Mode: The LP28009 will enter Sleep Mode when ACIN input voltage are removed. This feature provides low leakage current from the battery during the absence of input supply.

ACIN Over Voltage Protection


The ACIN input voltage is monitored by an internal OVP comparator. The comparator has an accurate reference of 2.5V from the band-gap reference. The OVP threshold is set by the internal resistive. The protection threshold is set to 6.5V. When the input voltage exceeds the threshold, the comparator outputs a logic signal to turn off the power P-MOSFET to prevent the high input voltage from damaging the electronics in the handheld system. When the input over voltage condition is removed (ACIN < 6V), the comparator re-enables the output by running through the soft-start.

Fast-Charge Current Setting

The LP28009 offers ISETA pin to determine the ACIN charge rate from 100mA to 1.2A. The charge current can be calculated as following equation.

$$I_{charge_ac} = K_{SET} \frac{V_{SET}}{R_{SETA}}$$

The parameter K_{SET} = 300 ; V_{SET} = 2.5V. R_{SETA} is the resistor connected between the ISETA and GND.

Pre- Charge Current Setting

During a charge cycle if the battery voltage is below the VPRECH threshold, the LP28009 applies a pre-charge mode to the battery. This feature revives deeply discharged cell sand protects battery life. The LP28009 internal determines the pre-charge rate as 10% of the fast-charge current. Battery Voltage Regulation. The LP28009 monitors the battery voltage through the BATT pin. Once the battery voltage level closes to the VREG threshold, the LP28009 voltage enters constant phase and the charging current begins to taper down. When battery voltage is over the VREG threshold, the LP28009 will stop charge and keep to monitor the battery voltage. However, when the battery voltage decreases 100mV below the VREG, it will be recharged to keep the battery voltage. Charge Status Outputs. The open-drain CHG_S and PGOOD outputs indicate various charger operations as shown in the following table. These status pins can be used to drive LEDs or communicate to the host processor. Note that ON indicates the open-drain transistor is turned on and LED is bright.

Charge State		CHG_S	PGOOD	
ACIN	Charge	ON	ON	
	Charge done	OFF	ON	

Temperature Regulation and Thermal Protection

In order to maximize the charge rate, the LP28009 features a junction temperature regulation loop. If the power dissipation of the IC results in a junction temperature greater than the thermal regulation threshold (125°C), theLP28009 throttles back on the charge current in order to maintain a junction temperature around the thermal regulation threshold (125°C). The LP28009 monitors the junction temperature, TJ, of the die and disconnects the battery from the input if TJ exceeds 125°C. This operation continues until junction temperature falls below thermal regulation threshold (125°C) by the hysteresis level. This feature prevents the chip from damage.

Selecting the Input and Output Capacitors

In most applications, the most important is the high-frequency decoupling capacitor on the input of the LP28009.A 1uF ceramic capacitor, placed in close proximity to input pin and GND pin is recommended. In some applications depending on

the power supply characteristics and cable length, it may be necessary to add an additional 10uFceramic capacitor to the input.

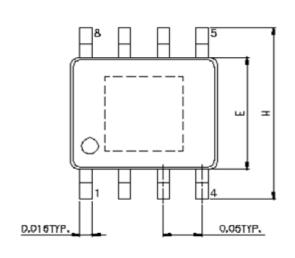
The LP28009 requires a small output capacitor for loop stability. A 1uF ceramic capacitor placed between the BATT pin and GND is typically sufficient.

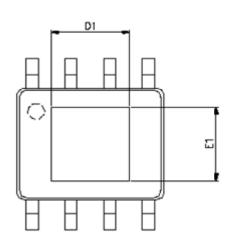
Layout Consideration

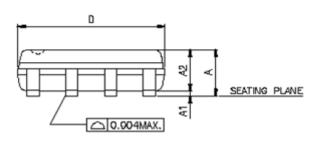
The LP28009 is a fully integrated low cost single-cell Li-Ion battery charger ideal for portable applications. Careful PCB layout is necessary. For best performance, place all peripheral components as close to the IC as possible. A short connection is highly recommended. The following guide lines should be strictly followed when designing a PCB layout for the LP28009.Input capacitor should be placed close to IC and connected to ground plane.

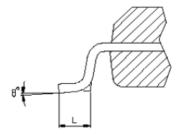
The trace of input in the PCB should be placed far away the sensitive devices or shielded by the ground.

The GND should be connected to a strong ground plane for heat sinking and noise protection. The connection of RSETA should be isolated from other noisy traces.


The short wire is recommended to prevent EMI and noise coupling.


Output capacitor should be placed close to IC and connected to ground plane to reduce noise coupling. The capacitance (0.1uF to10uF) base on PCB layout. When PCB has poor layout, the 10uF is recommended to prevent noise.




Packaging Information

E-SOP-8L

	COMMON						
symbol	DIMENSIONS MILLIMETER			DIMENSIONS INCH			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	1.35	-	1.75	0.053	-	0.069	
Αl	0.05		0.15	0.002	-	0.006	
A2	-	-	1.50	-	-	0.059	
b	0.4 BSC			0.016 BSC			
D	4.8	-	5.0	0.189	-	0.196	
D1	2.97 REF			0.117 REF			
Е	3.8	-	4.0	0.150	-	0.157	
El	2.18 REF				0.086 REF		
е	1.27 BSC			0.05 BSC			
Н	5.8	-	6.2	0.228	-	0.244	
L	0.4	-	1.27	0.016	-	0.050	
θ	0	-	8	0	-	8	

www.s-manuals.com