FAIRCHILD

SEMICONDUCTOR

NC7NZ34 TinyLogic® UHS Triple Buffer

General Description

The NC7NZ34 is a triple buffer from Fairchild's Ultra High Speed Series of TinyLogic® in the space saving US8 package. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad V_{CC} operating range. The device is specified to operate over the 1.65V to 5.5V V_{CC} range. The inputs and outputs are high impedance when V_{CC} is 0V. Inputs tolerate voltages up to 7V independent of V_{CC} operating voltage.

Features

- Space saving US8 surface mount package
- MicroPak[™] Pb-Free leadless package
- Ultra High Speed: t_{PD} 2.4 ns Typ into 50 pF at 5V V_{CC}

July 2001

Revised November 2005

- High Output Drive: ±24 mA at 3V V_{CC}
- Broad V_{CC} Operating Range: 1.65V to 5.5V
- Power down high impedance inputs/outputs
- Overvoltage tolerant inputs facilitate 5V to 3V translation
- Patented noise/EMI reduction circuitry implemented

Ordering Code:

	Code:								
		Product	_	ackage Description					
Order	Package	Code	P	Supplied As					
Number	Number	Top Mark							
NC7NZ34K8X	MAB08A	NZ34		3k Units on Tape and Reel					
NC7NZ34L8X	MAC08A	P9	Pb-Free 8-Lead Mi	croPak, 1.6 mm Wide	5k Units on Tape and Reel				
Pb-Free package p	Pb-Free package per JEDEC J-STD-020B.								
Logic Symbol				Connection Diagrams					
	IE	EE/IEC		V _{CC} 1Y 3A 8 7 6	2Y S				
	1A (1)	(7)	- 1Y						
	2A (3)				\land				
	2A (6) (2) 3Y								
3A - (7) - 3Y				1 2 3	4				
Pin Desc	Pin Descriptions			(Top View)					
				Pin One Orientation Diagram					
	n Names		cription						
	₁ , A ₂ , A ₃		a Inputs	AAA (weil qoT)					
Y.	Y ₁ , Y ₂ , Y ₃ Output				JEI				
Function	Table			Pin One					
i unotion				AAA represents Product Code Top Mark - s	-				
		Y = A		Note: Orientation of Top Mark determines Pin One location. Read the top product code mark left to right, Pin One is the lower left pin (see diagram).					
	Input	C	output	Pod Assignments fo	n Mioro Dok				
	Α		Y	Pad Assignments fo	2A 2A				
	L		L						
	Н		Н						
H = HIGH Logic Lev L = LOW Logic Lev									
					3 2Y				
				(Top Thru Vi					
TinyLogic® is a registered trademark of Fairchild Semiconductor Corporation.				•••	MicroPak [™] is a trademark of Fairchild Semiconductor Corporation.				

© 2005 Fairchild Semiconductor Corporation DS500494

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Voltage (V _{IN})	-0.5V to +7.0V
DC Output Voltage (V _{OUT})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
V _{IN} < 0V	–50 mA
DC Output Diode Current (I _{OK})	
V _{OUT} < 0V	–50 mA
DC Output Source/Sink Current (I _{OUT})	±50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	±100 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	250 mW

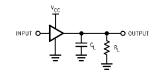
Recommended Operating Conditions (Note 2) Supply Voltage Operating (V_{CC}) 1.65V to 5.5V 1.5V to 5.5V Data Retention Input Voltage (VIN) 0V to 5.5V Output Voltage (V_{OUT}) 0V to $V_{\mbox{\scriptsize CC}}$ Input Rise and Fall Time (t_r, t_f) $V_{CC}=1.8V,\,2.5V\pm0.2V$ 0 to 20 ns/V $V_{CC}=3.3V\pm0.3V$ 0 to 10 ns/V $V_{CC}=5.5V\pm0.5V$ 0 to 5 ns/V Operating Temperature (T_A) $-40^{\circ}C$ to $+85^{\circ}C$ Thermal Resistance (θ_{JA}) 250°C/W

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$T_A=-40^\circ C$ to $+85^\circ C$		Units	Conditions		
	Farameter	(V)	Min Typ		Max	Min	Max	Units	0	nunions
V _{IH}	HIGH Level Control	1.8 ± 0.15	0.75 V _{CC}			0.75 V _{CC}		v		
	Input Voltage	2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
VIL	LOW Level Control	1.8 ± 0.15			0.25 V _{CC}		0.25 V _{CC}	V		
	Input Voltage	2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{OH}	HIGH Level Control	1.65	1.55	1.65		1.55				
	Output Voltage	2.3	2.2	2.3		2.2				I _{OH} = -100 μ/
		3.0	2.9	3.0		2.9				$i_{OH} = -100 \mu$
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29		V	$V_{IN}=V_{IH}$	$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.14		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.75		2.4				$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.62		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.13		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Control	1.65		0.0	0.1		0.1			
	Output Voltage	2.3		0.0	0.1		0.1			I _{OL} = 100 μA
		3.0		0.0	0.1		0.1			ιοι – 100 μΑ
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24	V	$V_{IN}=V_{IL}$	$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.16	0.4		0.4			$I_{OL} = 16 \text{ mA}$
		3.0		0.24	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.25	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±0.1		±1.0	μΑ	$0 \le V_{IN} \le 5$.5V
I _{OFF}	Power Off Leakage Current	0.0			1.0		10	μΑ	V _{IN} or V _{OU}	_T = 5.5V
I _{CC}	Quiescent Supply Current	1.65 to 5.5			1.0		10	μΑ	V _{IN} = 5.5V,	GND


Symbol	Parameter	V _{cc}	T _A = +25°C		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	O an all the sec	Figure	
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	Number
t _{PLH}	Propagation Delay	1.8 ± 0.15	1.8	4.6	8.0	1.8	8.8	ns	C _L = 15 pF,	Figures
t _{PHL}		2.5 ± 0.2	1.0	3.0	5.2	1.0	5.8			
		3.3 ± 0.3	0.8	2.3	3.6	0.8	4.0	ns	$R_L = 1 \ M\Omega$	Ĩ, 3
		5.0 ± 0.5	0.5	1.8	2.9	0.5	3.2			
t _{PLH}	Propagation Delay	3.3 ± 0.3	1.2	3.0	4.6	1.2	5.1	ns	ns $C_L = 50 \text{ pF},$ $R_L = 500\Omega$	Figures 1, 3
t _{PHL}		5.0 ± 0.5	0.8	2.4	3.8	0.8	4.2			
CIN	Input Capacitance	0		2.5				pF		
C _{PD}	Power Dissipation	3.3		9					(1)-1-0)	Figure 0
	Capacitance	5.0		11				pF	(Note 3)	Figure 2

loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC} static).$

Dynamic Switching Characteristics

Symbol	Parameter	Conditions	V _{CC} (V)	T _A = 25°C Typical	Unit
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	$C_L = 50 pF, V_{IH} = 5.0V, V_{IL} = 0V$	5.0	0.8	V
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	$C_L = 50 pF, V_{IH} = 5.0V, V_{IL} = 0V$	5.0	-0.8	V

AC Loading and Waveforms

 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_W = 500 ns

FIGURE 1. AC Test Circuit

Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = 10 MHz; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit

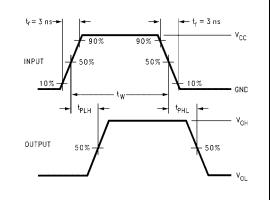


FIGURE 3. AC Waveforms

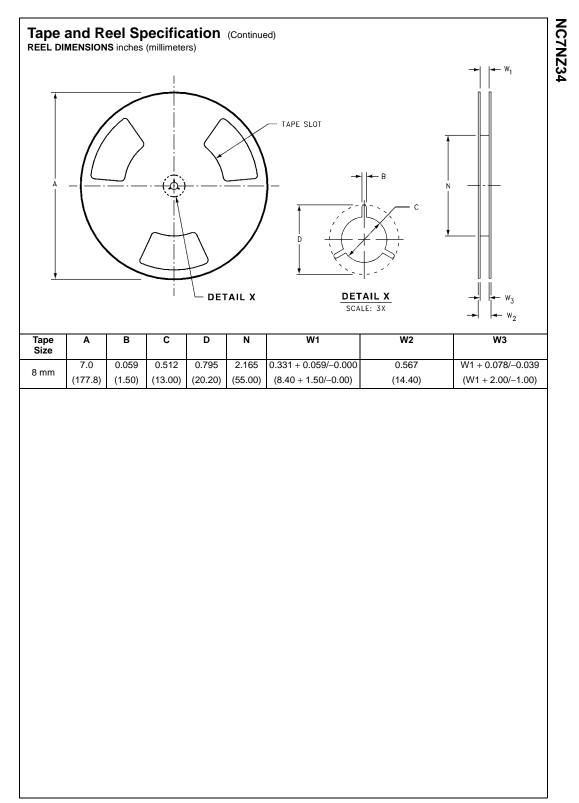
Tape and Reel Specification

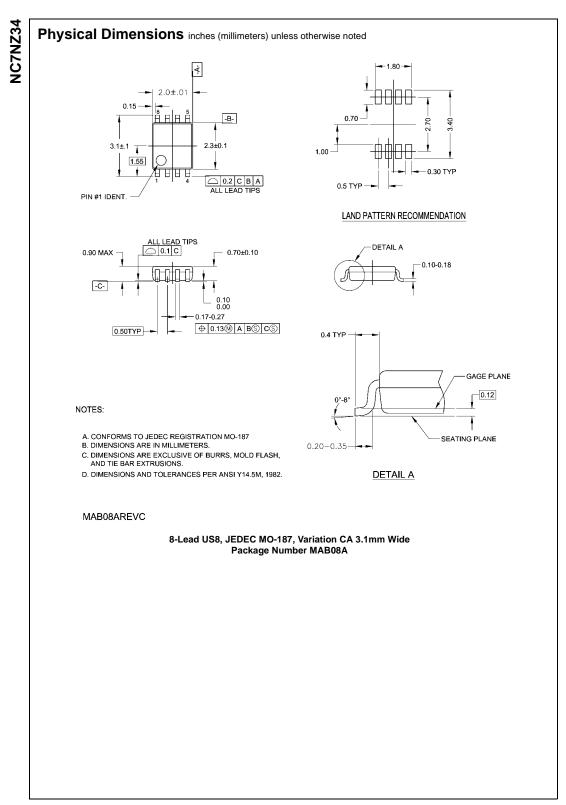
TAPE FORMAT for U	JS8				
Package	Таре	Number	Cavity	Cover Tape	
Designator	Section	Cavities	Status	Status	
	Leader (Start End)	125 (typ)	Empty	Sealed	
K8X	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	

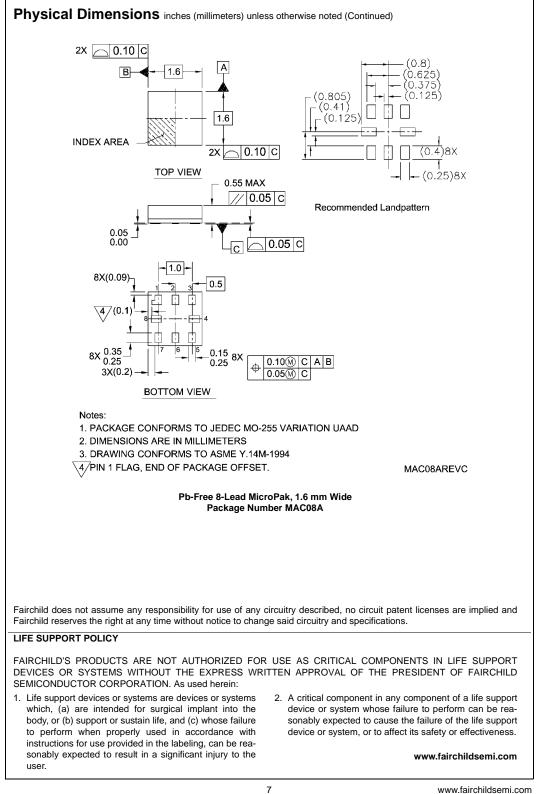
TAPE DIMENSIONS inches (millimeters) 2.00 4.00 - ø1.50 TYP -1.75 3.50±0.05 8.00 +0.30 -0.10 - 1.00±0.25 TYP TAPE FORMAT for MicroPak Package Tape Number Cavity Cover Tape Designator Section Cavities Status Status Leader (Start End) 125 (typ) Empty Sealed

3000

Filled


Sealed


Sealed Trailer (Hub End) 75 (typ) Empty TAPE DIMENSIONS inches (millimeters) 4.00 Ø1.50^{+0.10} 2.00 4.00 _Γ1.75±0.10 вч \oplus \bigcirc (8.00^{+0.30} . A 3.50±0.05 5 1.78 ± 0.05 Ð • -0-0 в⊸ ¢0,50±0.05 SECTION B-B SCALE:10X R30.0 NOTE:5 0.254±0.020 Ko 5° MAX · BEND RADIUS 1.78±0.05


Carrier

SECTION A-A SCALE:10X

K8X

NC7NZ34 TinyLogic® UHS Triple Buffer

www.s-manuals.com