Preferred Device

Power MOSFET 3.0 Amps, 60 Volts, Logic Level N-Channel SOT-223

Designed for low voltage, high speed switching applications in power supplies, converters and power motor controls and bridge circuits.

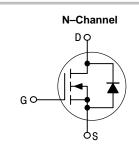
Applications

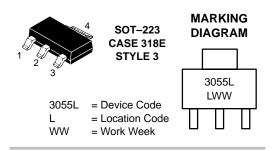
- Power Supplies
- Converters
- Power Motor Controls
- Bridge Circuits

MAXIMUM RATINGS (T_C = 25°C unless otherwise noted)

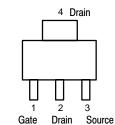
Symbol	Value	Unit
V _{DSS}	60	Vdc
V _{DGR}	60	Vdc
V _{GS}	± 15 ± 20	Vdc Vpk
I _D ID I _{DM}	3.0 1.4 9.0	Adc Apk
PD	2.1 1.3 0.014	Watts Watts W/°C
T _J , T _{stg}	–55 to 175	°C
E _{AS}	74	mJ
R _{θJA} R _{θJA}	72.3 114	°C/W
TL	260	°C
	V _{DSS} V _{DGR} V _{GS} I _D I _D I _D I _D I _D I _D I _D I _D	$\begin{array}{c c} V_{DSS} & 60 \\ \hline V_{DGR} & 60 \\ \hline V_{GS} & \pm 15 \\ \pm 20 \\ \hline I_D & 3.0 \\ I_D & 1.4 \\ \hline I_{DM} & 9.0 \\ \hline P_D & 2.1 \\ 1.3 \\ 0.014 \\ \hline T_J, T_{stg} & -55 \text{ to} \\ 175 \\ \hline E_{AS} & 74 \\ \hline \hline R_{\theta JA} & 72.3 \\ R_{\theta JA} & 114 \\ \hline \end{array}$

 When surface mounted to an FR4 board using 1" pad size, 1 oz. (Cu. Area 0.0995 in²).


 When surface mounted to an FR4 board using minimum recommended pad size, 2–2.4 oz. (Cu. Area 0.272 in²).



ON Semiconductor[™]


http://onsemi.com

3.0 AMPERES 60 VOLTS R_{DS(on)} = 120 mΩ

ORDERING INFORMATION

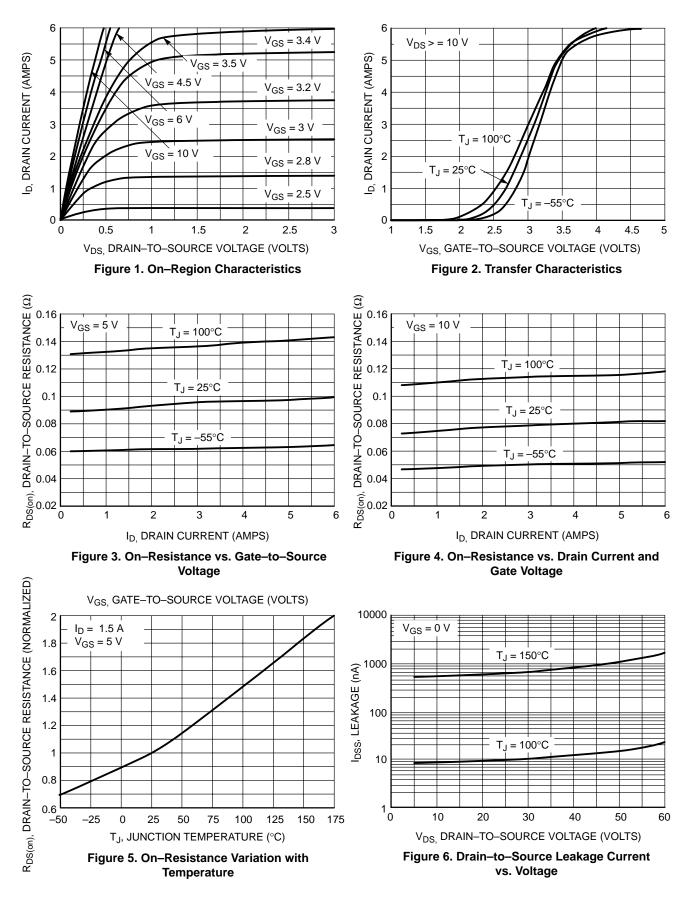
Device	Package	Shipping
NTF3055L108T1	SOT-223	1000/Tape & Reel
NTF3055L108T3	SOT-223	4000/Tape & Reel
NTF3055L108T3LF	SOT-223	4000/Tape & Reel

Preferred devices are recommended choices for future use and best overall value.

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Charac	Symbol	Min	Тур	Max	Unit	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	OFF CHARACTERISTICS						
	$(V_{GS} = 0 \text{ Vdc}, I_D = 250 \ \mu\text{Adc})$	V _(BR) DSS				Vdc mV/°C	
	$(V_{DS} = 60 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$	I _{DSS}				μAdc	
	Gate–Body Leakage Current (V _G	$_{\rm S}=\pm$ 15 Vdc, V _{DS} = 0 Vdc)	I _{GSS}	-	-	± 100	nAdc
	ON CHARACTERISTICS (Note 3)						-
	Gate Threshold Voltage (Note 3) ($V_{DS} = V_{GS}$, $I_D = 250 \ \mu Adc$)			1.0		2.0	Vdc mV/°C
$ \begin{array}{ c c c c c c } & (V_{GS} = 5.0 \ Vdc, \ I_{D} = 3.0 \ Adc, \ J_{J} = 150 \ ^{\circ}C) \\ \hline Forward Transconductance (Note 3) & (V_{DS} = 7.0 \ Vdc, \ I_{D} = 3.0 \ Adc) \\ \hline Forward Transconductance (Note 3) & (V_{DS} = 7.0 \ Vdc, \ I_{D} = 3.0 \ Adc) \\ \hline Forward Transconductance (Note 3) & (V_{DS} = 7.0 \ Vdc, \ I_{D} = 3.0 \ Adc) \\ \hline Forward Transconductance (Note 3) & (V_{DS} = 25 \ Vdc, \ V_{GS} = 0 \ V, \ f = 1.0 \ MHz) \\ \hline Forward Capacitance & & & \\ \hline C_{iss} & - & 313 & 440 \\ \hline C_{oss} & - & 112 & 160 \\ \hline C_{rss} & - & 40 & 60 \\ \hline \hline Forward CharActEristics (Note 4) \\ \hline Turn-On Delay Time & & \\ \hline Turn-On Delay Time & & \\ \hline Turn-Off Delay Time & & \\ \hline Fail Time & & & \\ \hline Fail Time & & & \\ \hline Gate Charge & & & \\ \hline (V_{DS} = 48 \ Vdc, \ I_{D} = 3.0 \ Adc, \ V_{GS} = 5.0 \ Vdc, \ V_{GS} = 0 \ Vdc, \ V_{GS} = 5.0 \ Vdc, \ V_{GS} = 0 \ Vdc, \ V_{GS} = 0 \ Vdc, \ V_{GS} = 5.0 \ Vdc, \ V_{GS} = 0 \ Vdc, \ V_{GS} = 0 \ Vdc, \ V_{GS} = 0 \ Vdc, \ V_{GS} = 5.0 \ Vdc, \ V_{GS} = 0 \ Vdc, \ V_{GS} = 0 \ Vdc, \ V_{GS} = 5.0 \ Vdc, \ V_{GS} = 0 \ Vdc, \ V_{GS}$		R _{DS(on)}	-	92	120	mΩ	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$(V_{GS} = 5.0 \text{ Vdc}, I_D = 3.0 \text{ Adc})$	V _{DS(on)}	_			Vdc	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance (Note 3)	9 _{fs}	-	5.7	-	Mhos	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	DYNAMIC CHARACTERISTICS						-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance		C _{iss}	-	313	440	pF
$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Output Capacitance		C _{oss}	-	112	160	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Transfer Capacitance	. –	C _{rss}	-	40	60	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SWITCHING CHARACTERISTICS	6 (Note 4)					
$\begin{array}{c c c c c c c } \hline U_{GS} = 5.0 \ Vdc, \\ R_G = 9.1 \ \Omega) \ (Note 3) \end{array} & \begin{array}{c c c c c c } \hline I_{d} & I_{G} & I_{G} & I_{G} \\ \hline I_{d} & I_{G} \\ \hline I_{d$	Turn–On Delay Time		t _{d(on)}	-	11	25	ns
$\begin{tabular}{ c c c c c c c c c c c } \hline Turn-Off Delay Time & $R_G = 9.1 \ \Omega$) (Note 3$) & $t_{d(off)}$ & $-$ & 22 & 45 \\ \hline $Fall Time & t_f & $-$ & 27 & 60 \\ \hline $Gate Charge & $(V_{DS} = 48 \ Vdc, \ I_D = 3.0 \ Adc, \ V_{GS} = 5.0 \ Vdc) (Note 3$) & Q_T & $-$ & 7.6 & 15 & nC \\ \hline Q_1 & $-$ & 1.4 & $-$ & Q_2 & $-$ & 4.0 & $-$ & Q_2 & $-$ & 4.0 & $-$ & Q_1 & $-$ & 1.4 & $-$ & Q_2 & $-$ & 4.0 & $-$ & Q_2 & $-$ & 0.87 & 1.0 & Q_2 & $-$ & 0.87 & 1.0 & Q_1 & $-$ & Q_1 & $-$ & Q_2 & $-$ & Q_1 & $-$ & Q_2 & $-$ & Q_1 & $-$ & Q_2 & $-$ & Q_1 & $-$ & Q_1 & $-$ & Q_2 & Q_1 & $-$ & Q_1 & $-$ & Q_2 & Q_1 & $-$ & Q_1 & Q_1 & Q_1 & Q_1 & Q_1 & Q_1 & Q_2 & Q_1 & $Q_1$$	Rise Time		t _r	-	35	70	-
Gate Charge Q_T - 7.6 15 nC $(V_{DS} = 48 \text{ Vdc}, I_D = 3.0 \text{ Adc}, V_{GS} = 5.0 \text{ Vdc}) (Note 3)$ Q_T - 1.4 - - Q_2 - 4.0 - - Q_2 - 4.0 - - - Q_2 - 4.0 -	Turn–Off Delay Time		t _{d(off)}	-	22	45	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Fall Time			-	27	60	-
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Gate Charge		QT	-	7.6	15	nC
Q2 - 4.0 - SOURCE-DRAIN DIODE CHARACTERISTICS VSD - 0.87 1.0 Vdc Forward On-Voltage (I _S = 3.0 Adc, V _{GS} = 0 Vdc, (I _S = 3.0 Adc, V _{GS} = 0 Vdc, T _J = 150°C) (Note 3) VSD - 0.87 1.0 Vdc Reverse Recovery Time t_{rr} - 35 - ns (I _S = 3.0 Adc, V _{GS} = 0 Vdc, T _J = 150°C) (Note 3) t_a - 21 -			Q ₁	-	1.4	-	
Forward On–Voltage $(I_S = 3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc})$ $(I_S = 3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$ $T_J = 150^{\circ}\text{C})$ (Note 3) V_{SD} $ 0.87$ 0.72 $1.0- Vdc Reverse Recovery Time t_{rr} 35 ns (I_S = 3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc},(I_S = 3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, t_a 21 -$			Q ₂	-	4.0	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	SOURCE-DRAIN DIODE CHARA	CTERISTICS					•
$(I_{S} = 3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, t_{a} - 21 - d_{a} (d_{a} - d_{a} $	Forward On–Voltage	$(I_{S} = 3.0 \text{ Adc}, V_{GS} = 0 \text{ Vdc},$	V _{SD}			1.0 _	Vdc
	Reverse Recovery Time		t _{rr}	-	35	-	ns
$d_{12}/dt = 100 A/\mu s$ (Note 3)		(I _S = 3.0 Adc, V _{GS} = 0 Vdc,	ta	-	21	-	1
			t _b	-	14	-	1

Reverse Recovery Stored Charge


Q_{RR}

μC

0.044

_

_

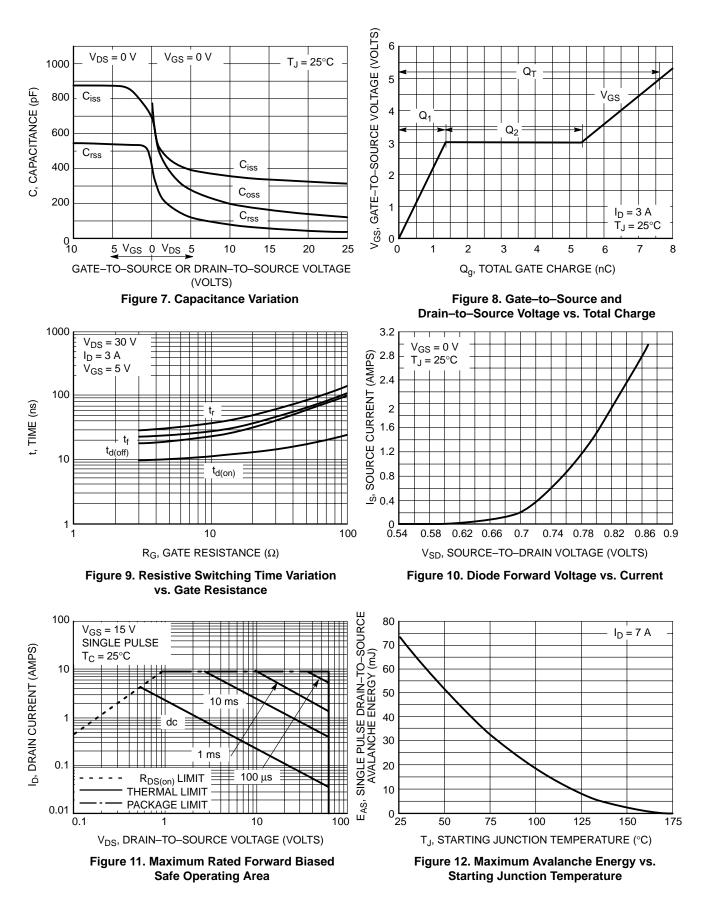
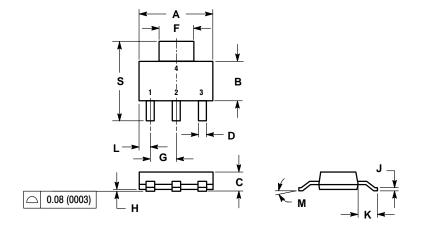



Figure 13. Thermal Response

PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04 ISSUE K

NOT	ES:
1.	DIMENSIONING AND TOLERANCING PER ANSI
	Y14.5M, 1982.
2.	CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS
DIM	MIN	MAX	MIN	MAX
Α	0.249	0.263	6.30	6.70
В	0.130	0.145	3.30	3.70
С	0.060	0.068	1.50	1.75
D	0.024	0.035	0.60	0.89
F	0.115	0.126	2.90	3.20
G	0.087	0.094	2.20	2.40
Н	0.0008	0.0040	0.020	0.100
J	0.009	0.014	0.24	0.35
Κ	0.060	0.078	1.50	2.00
L	0.033	0.041	0.85	1.05
Μ	0 °	10 °	0 °	10 °
S	0.264	0.287	6.70	7.30

STYLE 3: PIN 1. GATE 2. DRAIN 3. SOURCE 4. DRAIN

<u>Notes</u>

ON Semiconductor and without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATION

Literature Fulfillment:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA **Phone:** 303–675–2175 or 800–344–3860 Toll Free USA/Canada

Fax: 303–675–2176 or 800–344–3867 Toll Free USA/Canada Email: ONlit@hibbertco.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

JAPAN: ON Semiconductor, Japan Customer Focus Center 4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–0031 Phone: 81–3–5740–2700 Email: r14525@onsemi.com

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your local Sales Representative.

www.s-manuals.com