NPN Silicon Planar Epitaxial Transistor

This NPN Silicon Epitaxial transistor is designed for use in linear and switching applications. The device is housed in the SOT-223 package which is designed for medium power surface mount applications.

Features

- PNP Complement is PZT2907AT1
- The SOT-223 Package Can be Soldered Using Wave or Reflow
- SOT-223 Package Ensures Level Mounting, Resulting in Improved Thermal Conduction, and Allows Visual Inspection of Soldered Joints
- The Formed Leads Absorb Thermal Stress During Soldering, Eliminating the Possibility of Damage to the Die
- Available in 12 mm Tape and Reel

MAXIMUM RATINGS

- S Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q101 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant*

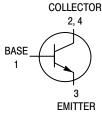
Rating	Symbol	Value	Unit
Collector-Emitter Voltage	V _{CEO}	40	Vdc
Collector-Base Voltage	V _{CBO}	75	Vdc
Emitter-Base Voltage (Open Collector)	V _{EBO}	6.0	Vdc
Collector Current	Ι _C	600	mAdc
Total Power Dissipation up to T _A = 25°C (Note 1)	P _D	1.5	W
Storage Temperature Range	T _{stg}	– 65 to +150	°C
Junction Temperature	TJ	150	°C

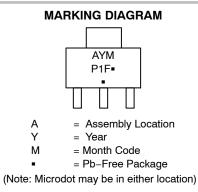
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Device mounted on an epoxy printed circuit board 1.575 inches x 1.575 inches x 0.059 inches; mounting pad for the collector lead min. 0.93 inches².

THERMAL CHARACTERISTICS

Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient	R_{\thetaJA}	83.3	°C/W
Lead Temperature for Soldering, 0.0625" from case Time in Solder Bath	ΤL	260 10	°C Sec

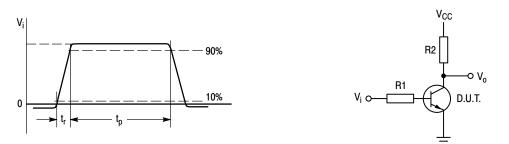



ON Semiconductor®

http://onsemi.com

SOT-223 PACKAGE NPN SILICON TRANSISTOR SURFACE MOUNT

ORDERING INFORMATION


Device	Package	Shipping [†]
PZT2222AT1G	SOT-223 (Pb-Free)	1,000 Tape & Reel
SPZT2222AT1G	SOT-223 (Pb-Free)	1,000 Tape & Reel
PZT2222AT3G	SOT-223 (Pb-Free)	4,000 Tape & Reel

⁺For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ELECTRICAL CHARACTERISTICS (T_A = 25° C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS				
Collector-Emitter Breakdown Voltage ($I_C = 10 \text{ mAdc}, I_B = 0$)	V _{(BR)CEO}	40	-	Vdc
Collector-Base Breakdown Voltage ($I_C = 10 \ \mu Adc, I_E = 0$)	V _{(BR)CBO}	75	-	Vdc
Emitter-Base Breakdown Voltage ($I_E = 10 \ \mu Adc$, $I_C = 0$)	V _{(BR)EBO}	6.0	-	Vdc
Base-Emitter Cutoff Current (V_{CE} = 60 Vdc, V_{BE} = - 3.0 Vdc)	I _{BEX}	-	20	nAdc
Collector-Emitter Cutoff Current (V _{CE} = 60 Vdc, V _{BE} = -3.0 Vdc)	I _{CEX}	-	10	nAdc
Emitter-Base Cutoff Current (V_{EB} = 3.0 Vdc, I_C = 0)	I _{EBO}	-	100	nAdc
Collector-Base Cutoff Current ($V_{CB} = 60 \text{ Vdc}, I_E = 0$) ($V_{CB} = 60 \text{ Vdc}, I_E = 0, T_A = 125^{\circ}C$)	I _{CBO}		10 10	nAdc μAdc
ON CHARACTERISTICS				
DC Current Gain (I _C = 0.1 mAdc, V _{CE} = 10 Vdc) (I _C = 1.0 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc) (I _C = 10 mAdc, V _{CE} = 10 Vdc, T _A = -55°C) (I _C = 150 mAdc, V _{CE} = 10 Vdc) (I _C = 150 mAdc, V _{CE} = 1.0 Vdc) (I _C = 500 mAdc, V _{CE} = 1.0 Vdc) (I _C = 500 mAdc, V _{CE} = 10 Vdc)	h _{FE}	35 50 70 35 100 50 40	- - - 300 - -	_
Collector–Emitter Saturation Voltages ($I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$)	V _{CE(sat)}		0.3 1.0	Vdc
Base-Emitter Saturation Voltages ($I_C = 150 \text{ mAdc}, I_B = 15 \text{ mAdc}$) ($I_C = 500 \text{ mAdc}, I_B = 50 \text{ mAdc}$)	V _{BE(sat)}	0.6 _	1.2 2.0	Vdc
Input Impedance (V_{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz) (V_{CE} = 10 Vdc, I _C = 10 mAdc, f = 1.0 kHz)	h _{ie}	2.0 0.25	8.0 1.25	kΩ
Voltage Feedback Ratio ($V_{CE} = 10 \text{ Vdc}, I_C = 1.0 \text{ mAdc}, f = 1.0 \text{ kHz}$) ($V_{CE} = 10 \text{ Vdc}, I_C = 10 \text{ mAdc}, f = 1.0 \text{ kHz}$)	h _{re}	-	8.0x10 ⁻⁴ 4.0x10 ⁻⁴	-
$ Small-Signal Current Gain \\ (V_{CE} = 10 Vdc, I_C = 1.0 mAdc, f = 1.0 kHz) \\ (V_{CE} = 10 Vdc, I_C = 10 mAdc, f = 1.0 kHz) $	h _{fe}	50 75	300 375	_
tput Admittance h _{oe} V _{CE} = 10 Vdc, I _C = 1.0 mAdc, f = 1.0 kHz) V _{CE} = 10 Vdc, I _C = 10 mAdc, f = 1.0 kHz)		5.0 25	35 200	μmhos
Noise Figure (V _{CE} = 10 Vdc, I _C = 100 μ Adc, f = 1.0 kHz)	F	-	4.0	dB
DYNAMIC CHARACTERISTICS				
Current–Gain – Bandwidth Product (I _C = 20 mAdc, V _{CE} = 20 Vdc, f = 100 MHz)	fT	300	_	MHz
Output Capacitance (V_{CB} = 10 Vdc, I_E = 0, f = 1.0 MHz)	C _c	-	8.0	pF
Input Capacitance (V_{EB} = 0.5 Vdc, I_C = 0, f = 1.0 MHz)	pacitance (V _{EB} = 0.5 Vdc, I _C = 0, f = 1.0 MHz) C _e – 25		25	pF
SWITCHING TIMES (T _A = 25°C)				
Delay Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc},$	t _d	-	10	ns
Rise Time I _{B(on)} = 15 mAdc, V _{EB(off)} = 0.5 Vdc) Figure 1	t _r	-	25	
Storage Time $(V_{CC} = 30 \text{ Vdc}, I_C = 150 \text{ mAdc},$	t _s	_	225	ns
				1

. .

~ ~ ** \ **

- - . . .

Figure 1. Input Waveform and Test Circuit for Determining Delay Time and Rise Time

$v_i = -0.5 v$ to +9.9 v,	$v_{\rm CC}$ = +30 v, R1 = 619 Ω , R	$R2 = 200 \ \Omega.$	
PULSE GENERATOR: PULSE DURATION RISE TIME DUTY FACTOR	$t_p 3 200 \text{ ns}$ $t_r 3 2 \text{ ns}$ $\delta = 0.02$	OSCILLOSCOPE: INPUT IMPEDANCE INPUT CAPACITANCE RISE TIME	Z _i > 100 kΩ C _i < 12 pF t _r < 5 ns

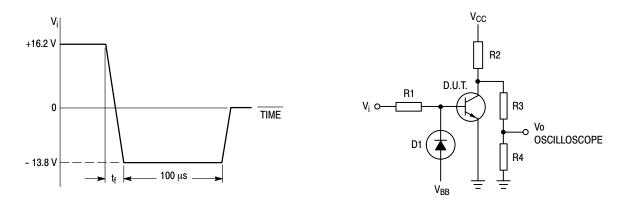
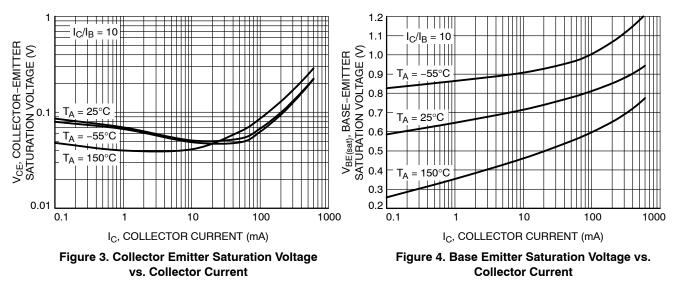
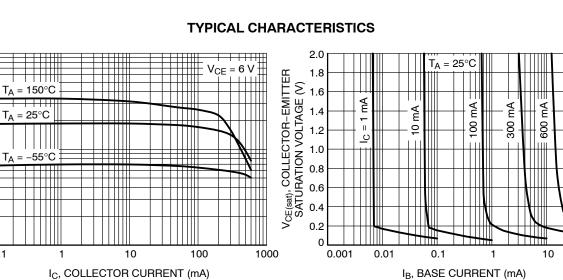




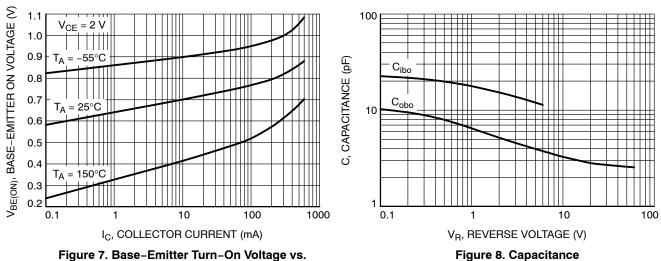
Figure 2. Input Waveform and Test Circuit for Determining Storage Time and Fall Time

TYPICAL CHARACTERISTICS

1000

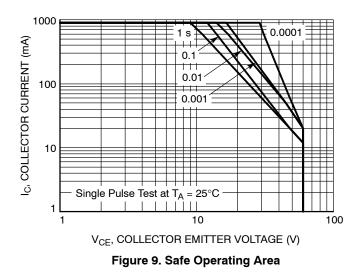
100

10


0.1

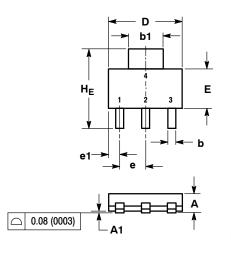
TA

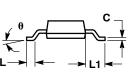
h_{FE}, DC CURRENT GAIN


Figure 6. Saturation Region

100

Collector Current

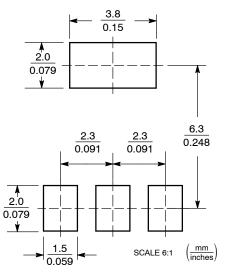

Figure 8. Capacitance



PACKAGE DIMENSIONS

SOT-223 (TO-261) CASE 318E-04

ISSUE N


NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M,

14.					
2. CONTROLLING DIMENSION: INCH.					
MILLIMETERS		INCHES			
MIN	NOM	MAX	MIN	NOM	MAX
1.50	1.63	1.75	0.060	0.064	0.068
0.02	0.06	0.10	0.001	0.002	0.004
0.60	0.75	0.89	0.024	0.030	0.035
2.90	3.06	3.20	0.115	0.121	0.126
0.24	0.29	0.35	0.009	0.012	0.014
6.30	6.50	6.70	0.249	0.256	0.263
3.30	3.50	3.70	0.130	0.138	0.145
2.20	2.30	2.40	0.087	0.091	0.094
0.85	0.94	1.05	0.033	0.037	0.041
0.20			0.008		
1.50	1.75	2.00	0.060	0.069	0.078
6.70	7.00	7.30	0.264	0.276	0.287
0°	_	10°	0°	-	10°
	CONTROLLI M MIN 1.50 0.02 0.60 2.90 0.24 6.30 3.30 2.20 0.85 0.20 1.50 6.70	CONTROLLING DIMENS MILLIMETE MIN NOM 1.50 1.63 0.02 0.06 0.60 0.75 2.90 3.06 0.24 0.29 6.30 6.50 3.30 3.50 2.20 2.30 0.85 0.94 0.20 1.50 1.75 6.70 7.00	CONTROLLING DIMENSION: INCH. MILLIMETERS MIN NOM MAX 1.50 1.63 1.75 0.02 0.06 0.10 0.60 0.75 0.89 2.90 3.06 3.20 0.24 0.29 0.35 6.30 6.50 6.70 2.20 2.30 2.40 0.85 0.94 1.05 0.20 1.50 1.75 2.00	CONTROLLING DIMENSION: INCH. MILLIMETERS MIN NOM MAX MIN 1.50 1.63 1.75 0.060 0.02 0.06 0.10 0.001 0.60 0.75 0.89 0.024 2.90 3.06 3.20 0.115 0.24 0.29 0.35 0.009 6.30 6.50 6.70 0.249 3.30 3.50 3.70 0.130 2.20 2.30 2.40 0.087 0.85 0.94 1.05 0.033 0.20 0.008 1.50 1.75 2.00 0.060	MILLIME DIMENSION: INCH INCHES MILLIMETERS INCHES MIN NOM MAX MIN NOM 1.50 1.63 1.75 0.060 0.064 0.02 0.06 0.10 0.001 0.002 0.60 0.75 0.89 0.024 0.030 2.90 3.06 3.20 0.115 0.121 0.24 0.29 0.35 0.009 0.012 6.30 6.50 6.70 0.249 0.256 3.30 3.50 3.70 0.130 0.138 2.20 2.30 2.40 0.087 0.091 0.85 0.94 1.05 0.033 0.037 0.20 0.060 0.069 6.70 7.00 7.30 0.264 0.276

2. COLLECTOR 3. EMITTER 4. COLLECTOR

STYLE 1: PIN 1. BASE

SOLDERING FOOTPRINT*

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and a registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any dark associated with such unintended or unauthorized applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

PZT2222AT1/D

www.s-manuals.com