

P-Channel 8 V (D-S) MOSFET

MOSFET PRODUCT SUMMARY						
V _{DS} (V)	$R_{DS(on)}\left(\Omega\right)$	I _D (A) ^a	Q _g (Typ.)			
- 8	0.030 at V _{GS} = - 4.5 V	- 6 ^e				
	0.036 at V _{GS} = - 2.5 V	- 6 ^e				
	0.048 at V _{GS} = - 1.8 V	- 5.9	11.8 nC			
	$0.068 \text{ at V}_{GS} = -1.5 \text{ V}$	- 5				
	$0.120 \text{ at V}_{GS} = -1.2 \text{ V}$	- 3.7				

Ordering Information: Si2329DS-T1-GE3 (Lead (Pb)-free and Halogen-free)

FEATURES

- Halogen-free According to IEC 61249-2-21 **Definition**
- TrenchFET® Power MOSFET
- 100 % R_q Tested
- Compliant to RoHS Directive 2002/95/EC

HALOGEN **FREE**

APPLICATIONS

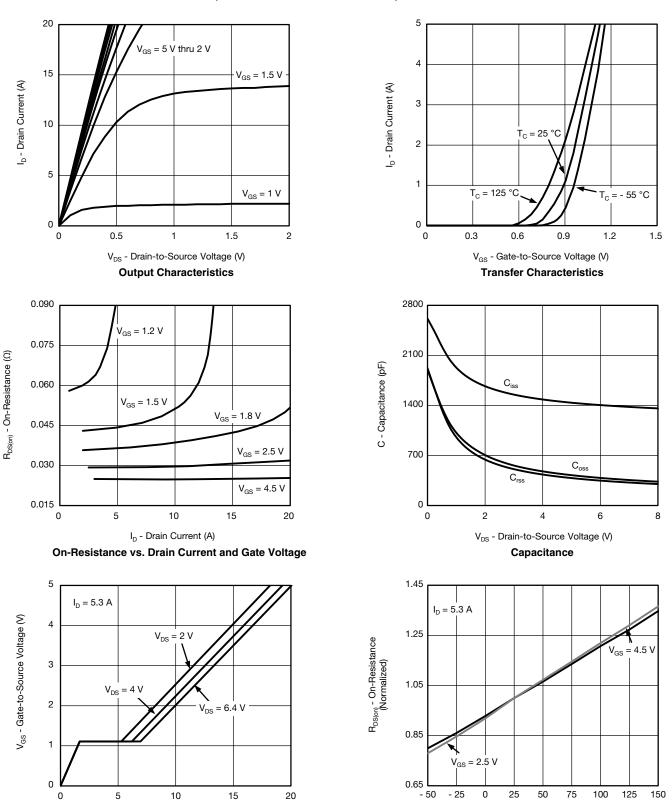
- Load Switch
- Low Voltage Gate Drive
 - Low On-Resistance
- Battery Management in Portable Equipment

ABSOLUTE MAXIMUM RATINGS (T _A = 25 °C, unless otherwise noted)							
Parameter	Symbol	Limit	Unit				
Drain-Source Voltage	V _{DS}	- 8	V				
Gate-Source Voltage	V_{GS}	± 5	v				
	T _C = 25 °C		- 6 ^e				
Continuous Drain Current (T _{.1} = 150 °C)	T _C = 70 °C	1	- 6				
Continuous Diam Current (1) = 100 O)	T _A = 25 °C	I _D	- 5.3 ^{b, c}				
	T _A = 70 °C		- 4.2 ^{b, c}	A			
Pulsed Drain Current (t = 300 μs)	I _{DM}	- 20					
Continuous Source-Drain Diode Current	T _C = 25 °C	l _S	- 2.1				
Continuous Source-Diam Diode Current	T _A = 25 °C	'S	- 1.0 ^{b, c}				
	T _C = 25 °C		2.5				
Maximum Power Dissipation	T _C = 70 °C	P _D	1.6	w			
Maximum Fower Dissipation	T _A = 25 °C	' D	1.25 ^{b, c}	- vv			
	T _A = 70 °C		0.8 ^{b, c}				
Operating Junction and Storage Temperature Range	T _J , T _{stg}	- 55 to 150	°C				

THERMAL RESISTANCE RATINGS							
Parameter		Symbol	Typical	Maximum	Unit		
Maximum Junction-to-Ambient ^{b, d}	≤ 5 s	R _{thJA}	75	100	°C/W		
Maximum Junction-to-Foot (Drain)	Steady State	R _{th IE}	40	50] 0/**		

Notes:

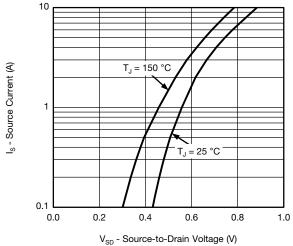
- a. Based on T_C = 25 °C.
- b. Surface mounted on 1" x 1" FR4 board.
- d. Maximum under steady state conditions is 166 °C/W.
- e. Package limited.

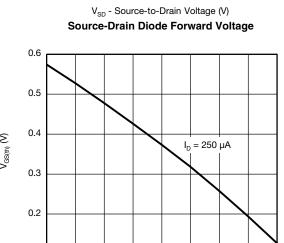

MOSFET SPECIFICATIONS (T _J = 25 °C, unless otherwise noted)							
Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
Static	.,		1	1	I		
Drain-Source Breakdown Voltage	V _{DS}	$V_{GS} = 0 \text{ V}, I_D = -250 \mu\text{A}$	- 8			V	
V _{DS} Temperature Coefficient	ΔV _{DS} /T _J	I _D = - 250 μA		- 6		mV/°C	
V _{GS(th)} Temperature Coefficient	$\Delta V_{GS(th)}/T_J$			2.3			
Gate-Source Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = -250 \mu A$	- 0.35		- 0.8	V	
Gate-Source Leakage	I _{GSS}	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 5 \text{ V}$			± 100	nA	
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} = -8 V, V _{GS} = 0 V			- 1	μΑ	
Zoro date voltage Brain Gurrent	טיטוי	V _{DS} = -8 V, V _{GS} = 0 V, T _J = 55 °C			- 10		
On-State Drain Current ^a	$I_{D(on)}$	$V_{DS} \le -5 \text{ V}, V_{GS} = -5.3 \text{ V}$	- 20			Α	
		V _{GS} = - 4.5 V, I _D = - 5.3 A		0.025	0.030		
		V _{GS} = - 2.5 V, I _D = - 4.8 A		0.030	0.036		
Drain-Source On-State Resistance ^a	R _{DS(on)}	V _{GS} = - 1.8 V, I _D = - 4.2 A		0.037	0.048	Ω	
		V _{GS} = - 1.5 V, I _D = - 3.5 A		0.045	0.068		
		V _{GS} = - 1.2 V, I _D = - 0.8 A		0.060	0.120		
Forward Transconductance ^a	9 _{fs}	V _{DS} = - 4 V, I _D = - 5.3 A		2.0		S	
Dynamic ^b			•	•			
Input Capacitance	C _{iss}			1485			
Output Capacitance	C _{oss}	V _{DS} = - 4 V, V _{GS} = 0 V, f = 1 MHz		480		pF	
Reverse Transfer Capacitance	C _{rss}			435			
	Qg	V _{DS} = - 4 V, V _{GS} = - 4.5 V, I _D = - 5.3 A		19.3	29		
Total Gate Charge				11.8	18		
Gate-Source Charge	Q_{gs}	$V_{DS} = -4 \text{ V}, V_{GS} = -2.5 \text{ V}, I_{D} = -5.3 \text{ A}$		1.7		nC	
Gate-Drain Charge	Q _{qd}			6.2			
Gate Resistance	R _q	f = 1 MHz	0.8	4.2	8.4	Ω	
Turn-On Delay Time	t _{d(on)}			20	30		
Rise Time	t _r	$V_{DD} = -4 \text{ V}, R_{L} = 0.9 \Omega$		22	33	1	
Turn-Off Delay Time	t _{d(off)}	$I_D = -4.2 \text{ A}, V_{GEN} = -4.5 \text{ V}, R_g = 1 \Omega$		46	69	ns	
Fall Time	t _f	, and the second		20	30		
Drain-Source Body Diode Characteristi	cs						
Continuous Source-Drain Diode Current	I _S	T _C = 25 °C			- 2.1		
Pulse Diode Forward Current ^a	I _{SM}				- 20	A	
Body Diode Voltage	V _{SD}	I _S = - 4.2 A		- 0.8	- 1.2	V	
Body Diode Reverse Recovery Time	t _{rr}	-		40	60	ns	
Body Diode Reverse Recovery Charge Q _{rr}				26	39	nC	
Reverse Recovery Fall Time		t_a t_b $I_F = -4.2 \text{ A, dI/dt} = 100 \text{ A/}\mu\text{s, T}_J = 25 °\text{C}$		17		ns	
Reverse Recovery Rise Time				23			

- a. Pulse test; pulse width \leq 300 μ s, duty cycle \leq 2 %.
- b. Guaranteed by design, not subject to production testing.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Q_a - Total Gate Charge (nC)


Gate Charge

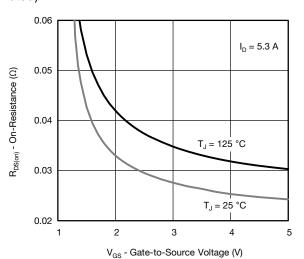
T_J - Junction Temperature (°C)

On-Resistance vs. Junction Temperature

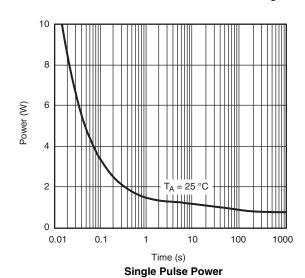
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

T_J - Temperature (°C) **Threshold Voltage**

50


75

100

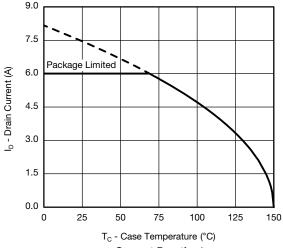

125

25

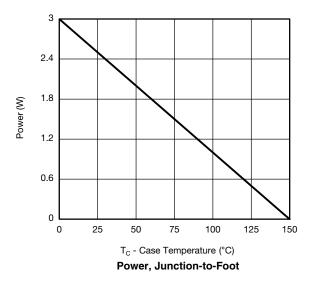
0

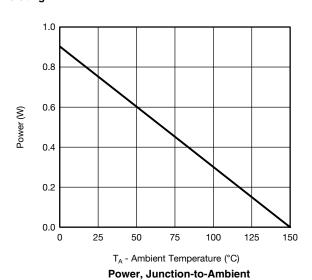
On-Resistance vs. Gate-to-Source Voltage

100 10 I_D - Drain Current (A) 10 ms 1 s, 0.1 DC $T_C = 25 \, ^{\circ}C$ **BVDSS Limited** Single Pulse 0.01 0.1 $V_{\rm DS}$ - Drain-to-Source Voltage (V)

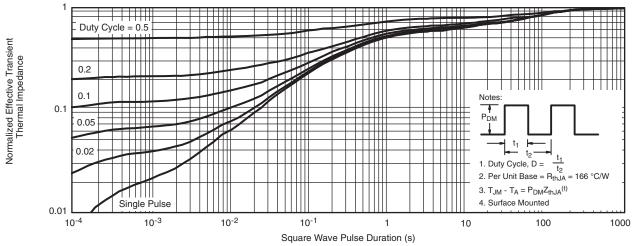

* V_{GS} > minimum V_{GS} at which $R_{DS(on)}$ is specified

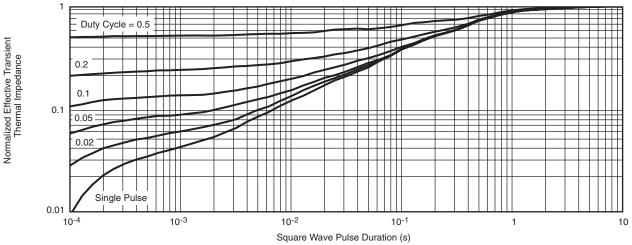
0.1


- 50 - 25



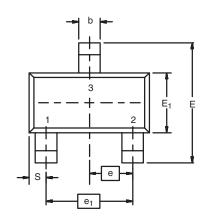
TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)

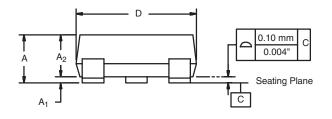

Current Derating*

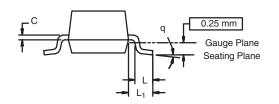


 $^{^*}$ The power dissipation P_D is based on $T_{J(max)} = 150$ °C, using junction-to-case thermal resistance, and is more useful in settling the upper dissipation limit for cases where additional heatsinking is used. It is used to determine the current rating, when this rating falls below the package limit.

TYPICAL CHARACTERISTICS (25 °C, unless otherwise noted)


Normalized Thermal Transient Impedance, Junction-to-Ambient




Normalized Thermal Transient Impedance, Junction-to-Foot

Vishay Siliconix maintains worldwide manufacturing capability. Products may be manufactured at one of several qualified locations. Reliability data for Silicon Technology and Package Reliability represent a composite of all qualified locations. For related documents such as package/tape drawings, part marking, and reliability data, see www.vishay.com/ppq?67690.

SOT-23 (TO-236): 3-LEAD

Dim	MILLI	METERS	INCHES			
	Min	Max	Min	Max		
Α	0.89	1.12	0.035	0.044		
A ₁	0.01	0.10	0.0004	0.004		
A ₂	0.88	1.02	0.0346	0.040		
b	0.35	0.50	0.014	0.020		
С	0.085	0.18	0.003	0.007		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E ₁	1.20	1.40	0.047	0.055		
е	0.9	5 BSC	0.037	4 Ref		
e ₁	1.90 BSC		0.074			
L	0.40	0.60	0.016	0.024		
L ₁	0.6	64 Ref	0.025 Ref			
S	0.5	Ref 0.020 Ref) Ref		
q	3°	8°	3°	8°		
FCN: S-03946-Rev K 09-	lul-01	•				

ECN: S-03946-Rev. K, 09-Jul-01

DWG: 5479

Document Number: 71196 www.vishay.com 09-Jul-01

Mounting LITTLE FOOT® SOT-23 Power MOSFETs

Wharton McDaniel

Surface-mounted LITTLE FOOT power MOSFETs use integrated circuit and small-signal packages which have been been modified to provide the heat transfer capabilities required by power devices. Leadframe materials and design, molding compounds, and die attach materials have been changed, while the footprint of the packages remains the same.

See Application Note 826, Recommended Minimum Pad Patterns With Outline Drawing Access for Vishay Siliconix MOSFETs, (http://www.vishay.com/doc?72286), for the basis of the pad design for a LITTLE FOOT SOT-23 power MOSFET footprint. In converting this footprint to the pad set for a power device, designers must make two connections: an electrical connection and a thermal connection, to draw heat away from the package.

The electrical connections for the SOT-23 are very simple. Pin 1 is the gate, pin 2 is the source, and pin 3 is the drain. As in the other LITTLE FOOT packages, the drain pin serves the additional function of providing the thermal connection from the package to the PC board. The total cross section of a copper trace connected to the drain may be adequate to carry the current required for the application, but it may be inadequate thermally. Also, heat spreads in a circular fashion from the heat source. In this case the drain pin is the heat source when looking at heat spread on the PC board.

Figure 1 shows the footprint with copper spreading for the SOT-23 package. This pattern shows the starting point for utilizing the board area available for the heat spreading copper. To create this pattern, a plane of copper overlies the drain pin and provides planar copper to draw heat from the drain lead and start the process of spreading the heat so it can be dissipated into the ambient air. This pattern uses all the available area underneath the body for this purpose.

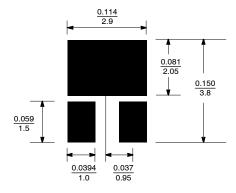
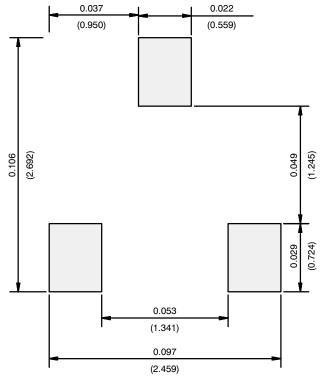


FIGURE 1. Footprint With Copper Spreading

Since surface-mounted packages are small, and reflow soldering is the most common way in which these are affixed to the PC board, "thermal" connections from the planar copper to the pads have not been used. Even if additional planar copper area is used, there should be no problems in the soldering process. The actual solder connections are defined by the solder mask openings. By combining the basic footprint with the copper plane on the drain pins, the solder mask generation occurs automatically.


A final item to keep in mind is the width of the power traces. The absolute minimum power trace width must be determined by the amount of current it has to carry. For thermal reasons, this minimum width should be at least 0.020 inches. The use of wide traces connected to the drain plane provides a low-impedance path for heat to move away from the device.

Document Number: 70739

26-Nov-03

RECOMMENDED MINIMUM PADS FOR SOT-23

Recommended Minimum Pads Dimensions in Inches/(mm)

Return to Index

APPLICATION NOTE

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Material Category Policy

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as RoHS-Compliant fulfill the definitions and restrictions defined under Directive 2011/65/EU of The European Parliament and of the Council of June 8, 2011 on the restriction of the use of certain hazardous substances in electrical and electronic equipment (EEE) - recast, unless otherwise specified as non-compliant.

Please note that some Vishay documentation may still make reference to RoHS Directive 2002/95/EC. We confirm that all the products identified as being compliant to Directive 2002/95/EC conform to Directive 2011/65/EU.

Vishay Intertechnology, Inc. hereby certifies that all its products that are identified as Halogen-Free follow Halogen-Free requirements as per JEDEC JS709A standards. Please note that some Vishay documentation may still make reference to the IEC 61249-2-21 definition. We confirm that all the products identified as being compliant to IEC 61249-2-21 conform to JEDEC JS709A standards.

Revision: 02-Oct-12 Document Number: 91000

www.s-manuals.com